怎么在R语言中求线性回归的拟合度-创新互联-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

怎么在R语言中求线性回归的拟合度-创新互联

本篇文章给大家分享的是有关怎么在R语言中求线性回归的拟合度,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

创新互联-专业网站定制、快速模板网站建设、高性价比秀峰网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式秀峰网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖秀峰地区。费用合理售后完善,10年实体公司更值得信赖。

创建关系模型并获取系数


x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# 使用lm()函数进行计算.
relation <- lm(y~x)

print(relation)

执行上面的代码,它产生以下结果

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)  x 
 -38.4551  0.6746

产生了一条线性方程式:

y = -38.4551 + 0.6746x

使用summary()函数,查看摘要

print(summary(relation))

结果如下:

Call:
lm(formula = y ~ x)

Residuals:
    Min      1Q     Median      3Q     Max
-6.3002    -1.6629  0.0412    1.8944  3.9775

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) -38.45509    8.04901  -4.778  0.00139 **
x             0.67461    0.05191  12.997 1.16e-06 ***
---
Signif. codes:  0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared:  0.9548,    Adjusted R-squared:  0.9491
F-statistic: 168.9 on 1 and 8 DF,  p-value: 1.164e-06

Multiple R-squared和Adjusted R-squared这两个值,其实我们常称之为“拟合优度”和“修正的拟合优度”,是指回归方程对样本的拟合程度。

R-squared(值范围0-1)描述的 输入变量对输出变量的解释程度。在单变量线性回归中R-squared 越大,说明拟合程度越好,模型对数据的预测越准确。

Adjusted R-square:自由度调整 r 平方。接近1的值表示更好的匹配。当您向模型中添加附加系数时, 它通常是适合质量的很好指示器。

关于R-squared 和 Adjusted R-squared联系与区别:,可以看看下文

https://www.yisu.com/article/207365.htm

简单来说,只要增加了更多的变量,无论增加的变量是否和输出变量存在关系,则R-squared 要么保持不变,要么增加。


所以, 需要adjusted R-squared ,它会对那些增加的且不会改善模型效果的变量增加一个惩罚向。

结论,如果单变量线性回归,则使用 R-squared评估,多变量,则使用adjusted R-squared。
在单变量线性回归中,R-squared和adjusted R-squared是一致的。

另外,如果增加更多无意义的变量,则R-squared 和adjusted R-squared之间的差距会越来越大,Adjusted R-squared会下降。但是如果加入的特征值是显著的,则adjusted R-squared也会上升。

使用predict()函数进行数据预测

语法:

predict(object, newdata)

object是已使用lm()函数创建的公式。

newdata是包含预测变量的新值的向量。

使用上面得到的方程式来预测

a <- data.frame(x = 170)
result <- predict(relation,a)
print(result)

得到预测结果

       1
76.22869

以上就是怎么在R语言中求线性回归的拟合度,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。


标题名称:怎么在R语言中求线性回归的拟合度-创新互联
地址分享:http://kswsj.cn/article/cosdsh.html

其他资讯