怎么用Python为直方图绘制拟合曲线-创新互联-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

怎么用Python为直方图绘制拟合曲线-创新互联

这篇文章将为大家详细讲解有关怎么用Python为直方图绘制拟合曲线,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

目前创新互联公司已为千余家的企业提供了网站建设、域名、虚拟主机、网站托管维护、企业网站设计、红河哈尼网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。

python的五大特点是什么

python的五大特点:1.简单易学,开发程序时,专注的是解决问题,而不是搞明白语言本身。2.面向对象,与其他主要的语言如C++和Java相比, Python以一种非常强大又简单的方式实现面向对象编程。3.可移植性,Python程序无需修改就可以在各种平台上运行。4.解释性,Python语言写的程序不需要编译成二进制代码,可以直接从源代码运行程序。5.开源,Python是 FLOSS(自由/开放源码软件)之一。

直方图是用于展示数据的分组分布状态的一种图形,用矩形的宽度和高度表示频数分布,通过直方图,用户可以很直观的看出数据分布的形状、中心位置以及数据的离散程度等。

在python中一般采用matplotlib库的hist来绘制直方图,至于如何给直方图添加拟合曲线(密度函数曲线),一般来说有以下两种方法。

方法一:采用matplotlib中的mlab模块

mlab模块是Python中强大的3D作图工具,立体感效果极佳。在这里使用mlab可以跳出直方图二维平面图形的限制,在此基础上再添加一条曲线。在这里,我们以鸢尾花iris中的数据为例,来举例说明。

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import pandas
# Load dataset
url =
"https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width','petal-length', 'petal-width', 'class']
dataset = pandas.read_csv(url, names=names)
print(dataset.head(10))
# descriptions
print(dataset.describe())
x = dataset.iloc[:,0] #提取第一列的sepal-length变量
mu =np.mean(x) #计算均值
sigma =np.std(x)
mu,sigma

以上为通过python导入鸢尾花iris数据,然后提取第一列的sepal-length变量为研究对象,计算出其均值、标准差,接下来就绘制带拟合曲线的直方图。

num_bins = 30 #直方图柱子的数量

n, bins, patches = plt.hist(x, num_bins,normed=1, facecolor='blue', alpha=0.5)
#直方图函数,x为x轴的值,normed=1表示为概率密度,即和为一,绿色方块,色深参数0.5.返回n个概率,直方块左边线的x值,及各个方块对象
y = mlab.normpdf(bins, mu, sigma)#拟合一条最佳正态分布曲线y 
plt.plot(bins, y, 'r--') #绘制y的曲线
plt.xlabel('sepal-length') #绘制x轴
plt.ylabel('Probability') #绘制y轴
plt.title(r'Histogram : $\mu=5.8433$,$\sigma=0.8253$')#中文标题 u'xxx' 

plt.subplots_adjust(left=0.15)#左边距 
plt.show()

怎么用Python为直方图绘制拟合曲线

以上命令主要采用mlab.normpdf基于直方图的柱子数量、均值、方差来拟合曲线,然后再用plot画出来,这种方法的一个缺点就是画出的正态分布拟合曲线(红色虚线)并不一定能很好反映数据的分布情况,如上图所示。

方法二:采用seaborn库中的distplot绘制

Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。

import seaborn as sns 
sns.set_palette("hls") #设置所有图的颜色,使用hls色彩空间
sns.distplot(x,color="r",bins=30,kde=True)
plt.show()

怎么用Python为直方图绘制拟合曲线

在这里主要使用sns.distplot(增强版dist),柱子数量bins也设置为30,kde=True表示是否显示拟合曲线,如果为False则只出现直方图。

在这里注意一下它与前边mlab.normpdf方法不同的是,拟合曲线不是正态的,而是更好地拟合了数据的分布情况,如上图,因此比mlab.normpdf更为准确。

进一步设置sns.distplot,可以采用kde_kws(拟合曲线的设置)、hist_kws(直方柱子的设置),可以得到:

import seaborn as sns 
import matplotlib as mpl 
sns.set_palette("hls") 
mpl.rc("figure", figsize=(6,4)) 
sns.distplot(x,bins=30,kde_kws={"color":"seagreen", "lw":3 }, hist_kws={ "color": "b" }) 
plt.show()

怎么用Python为直方图绘制拟合曲线

其中,lw为曲线粗细程度。

关于“怎么用Python为直方图绘制拟合曲线”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站标题:怎么用Python为直方图绘制拟合曲线-创新互联
分享URL:http://kswsj.cn/article/cssccp.html

其他资讯