怎么测试mysql性能 检查mysql是否正常-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

怎么测试mysql性能 检查mysql是否正常

如何测试mysql的性能和稳定性

 有一些有用的工具可以测试MySQL 和基于MySQL 的系统的性能。这里将演示如何利用这些工具进行测试。

成都创新互联-专业网站定制、快速模板网站建设、高性价比紫阳网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式紫阳网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖紫阳地区。费用合理售后完善,十多年实体公司更值得信赖。

mysqlslap

mysqlslap可以模拟服务器的负载,并输出计时信息。它包含在MySQL 5.1 的发行包中,应该在MySQL 4.1或者更新的版本中都可以使用。测试时可以执行并发连接数,并指定SQL 语句(可以在命令行上执行,也可以把SQL 语句写入到参数文件中)。如果没有指定SQL 语句,mysqlslap 会自动生成查询schema 的SELECT 语句。

MySQL Benchmark Suite (sql-bench)

在MySQL 的发行包中也提供了一款自己的基准测试套件,可以用于在不同数据库服务器上进行比较测试。它是单线程的,主要用于测试服务器执行查询的速度。结果会显示哪种类型的操作在服务器上执行得更快。

这个测试套件的主要好处是包含了大量预定义的测试,容易使用,所以可以很轻松地用于比较不同存储引擎或者不同配置的性能测试。其也可以用于高层次测试,比较两个服务器的总体性能。当然也可以只执行预定义测试的子集(例如只测试UPDATE 的性能)。这些测试大部分是CPU 密集型的,但也有些短时间的测试需要大量的磁盘I/O 操作。

这个套件的最大缺点主要有:它是单用户模式的,测试的数据集很小且用户无法使用指定的数据,并且同一个测试多次运行的结果可能会相差很大。因为是单线程且串行执行的,所以无法测试多CPU 的能力,只能用于比较单CPU 服务器的性能差别。使用这个套件测试数据库服务器还需要Perl 和BDB 的支持,相关文档请参考.

Super Smack

Super Smack是一款用于MySQL 和PostgreSQL的基准测试工具,可以提供压力测试和负载生成。这是一个复杂而强大的工具,可以模拟多用户访问,可以加载测试数据到数据库,并支持使用随机数据填充测试表。测试定义在"smack"文件中,smack 文件使用一种简单的语法定义测试的客户端、表、查询等测试要素。

Database Test Suite

Database Test Suite 是由开源软件开发实验室(OSDL,Open Source DevelopmentLabs)设计的,发布在SourceForge 网站上,这是一款类似某些工业标准测试的测试工具集,例如由事务处理性能委员会(TPC,Transaction Processing Performance Council)制定的各种标准。特别值得一提的是,其中的dbt2 就是一款免费的TPC-C OLTP 测试工具(未认证)。之前本书作者经常使用该工具,不过现在已经使用自己研发的专用于MySQL 的测试工具替代了。

Percona's TPCC-MySQL Tool

我们开发了一个类似TPC-C 的基准测试工具集,其中有部分是专门为MySQL 测试开发的。在评估大压力下MySQL 的一些行为时,我们经常会利用这个工具进行测试(简单的测试,一般会采用sysbench 替代),在源码库中有一个简单的文档说明。

sysbench

sysbench是一款多线程系统压测工具。它可以根据影响数据库服务器性能的各种因素来评估系统的性能。例如,可以用来测试文件I/O、操作系统调度器、内存分配和传输速度、POSIX 线程,以及数据库服务器等。sysbench 支持Lua 脚本语言,Lua 对于各种测试场景的设置可以非常灵活。sysbench 是我们非常喜欢的一种全能测试工具,支持MySQL、操作系统和硬件的硬件测试。(节选自《高性能MySQL》)

Go语言使用gorm对MySQL进行性能测试

之前写过了Go语言gorm框架MySQL实践,其中对gorm框架在操作MySQL的各种基础实践,下面分享一下如何使用gorm框架对MySQL直接进行性能测试的简单实践。

这里我使用了一个原始的Go语言版本的 FunTester 测试框架,现在只有一个基本的方法,实在是因为Go语言特性太强了。框架设计的主要思路之一就是利用Go语言的闭包和方法参数特性,将一个 func() 当做性能测试的主题,通过不断运行这个 func() 来实现性能测试。当然还有另外一个思路就是运行一个多线程任务类,类似 Java 版本的 com.funtester.base.constaint.ThreadBase 抽象类,这样可以设置一些类的属性,绑定一些测试资源,适配更多的测试场景。

下面演示select的性能测试,这里我用了随机ID查询的场景。

这里我使用从35开始递增的ID进行删除。

这里使用了select的用例部分,随机ID,然后更新name字段,随机10个长度的字符串。

这里用到了 FunTester 字段都是随机生成。

到这里可以看出,性能测试框架用到的都是gorm框架的基础API使用,这里MySQL连接池的管理工作完全交给了gorm框架完成,看资料说非常牛逼,我们只需要设置几个参数。这个使用体现很像 HttpClient 设置 HTTP 连接池类似,这里我们也可以看出这些优秀的框架使用起来都是非常简单的。

PS:关于gorm的基础使用的请参考上一期的文章Go语言gorm框架MySQL实践。

高性能MySQL:测试何种指标

测试何种指标

在开始执行甚至是在设计基准测试之前 需要先明确测试的目标 测试目标决定了选择什么样的测试工具和技术 以获得精确而有意义的测试结果 可以将测试目标细化为一系列的问题 比如 这种CPU 是否比另外一种要快? 或 新索引是否比当前索引性能更好?

有时候需要用不同的方法测试不同的指标 比如 针对延迟(latency)和吞吐量(throughput)就需要采用不同的测试方法

请考虑以下指标 看看如何满足测试的需求

吞吐量

吞吐量指的是单位时间内的事务处理数 这一直是经典的数据库应用测试指标 一些标准的基准测试被广泛地引用 如TPC C(参考// tpc ) 而且很多数据库厂商都努力争取在这些测试中取得好成绩 这类基准测试主要针对在线事务处理(OLTP)的吞吐量 非常适用于多用户的交互式应用 常用的测试单位是每秒事务数(TPS) 有些也采用每分钟事务数(TPM)

响应时间或者延迟

这个指标用于测试任务所需的整体时间 根据具体的应用 测试的时间单位可能是微秒 毫秒 秒或者分钟 根据不同的时间单位可以计算出平均响应时间 最小响应时间 最大响应时间和所占百分比 最大响应时间通常意义不大 因为测试时间越长 最大响应时间也可能越大 而且其结果通常不可重复 每次测试都可能得到不同的最大响应时间 因此 通常可以使用百分比响应时间(percentile responsetime)来替代最大响应时间 例如 如果 % 的响应时间都是 毫秒 则表示任务在 % 的时间段内都可以在 毫秒之内完成

使用图表有助于理解测试结果 可以将测试结果绘制成折线图(比如平均值折线或者 % 百分比折线)或者散点图 直观地表现数据结果集的分布情况 通过这些图可以发现长时间测试的趋势 本章后面将更详细地讨论这一点

并发性

并发性是一个非常重要又经常被误解和误用的指标 例如 它经常被表示成多少用户在同一时间浏览一个Web 站点 经常使用的指标是有多少个会话注 然而 HTTP协议是无状态的 大多数用户只是简单地读取浏览器上显示的信息 这并不等同于Web 服务器的并发性 而且 Web 服务器的并发性也不等同于数据库的并发性 而仅仅只表示会话存储机制可以处理多少数据的能力 Web 服务器的并发性更准确的度量指标 应该是在任意时间有多少同时发生的并发请求

在应用的不同环节都可以测量相应的并发性 Web 服务器的高并发 一般也会导致数据库的高并发 但服务器采用的语言和工具集对此都会有影响 注意不要将创建数据库连接和并发性搞混淆 一个设计良好的应用 同时可以打开成百上千个MySQL 数据库服务器连接 但可能同时只有少数连接在执行查询 所以说 一个Web 站点 同时有 个用户 访问 却可能只有 ~ 个并发请求到MySQL 数据库

换句话说 并发性基准测试需要关注的是正在工作中的并发操作 或者是同时工作中的线程数或者连接数 当并发性增加时 需要测量吞吐量是否下降 响应时间是否变长 如果是这样 应用可能就无法处理峰值压力

并发性的测量完全不同于响应时间和吞吐量 它不像是一个结果 而更像是设置基准测试的一种属性 并发性测试通常不是为了测试应用能达到的并发度 而是为了测试应用在不同并发下的性能 当然 数据库的并发性还是需要测量的 可以通过sy *** ench 指定 或者 个线程的测试 然后在测试期间记录MySQL 数据库的Threads_running 状态值 在第 章将讨论这个指标对容量规划的影响

可扩展性

在系统的业务压力可能发生变化的情况下 测试可扩展性就非常必要了 第 章将更进一步讨论可扩展性的话题 简单地说 可扩展性指的是 给系统增加一倍的工作 在理想情况下就能获得两倍的结果(即吞吐量增加一倍) 或者说 给系统增加一倍的资源(比如两倍的CPU 数) 就可以获得两倍的吞吐量 当然 同时性能(响应时间)也必须在可以接受的范围内 大多数系统是无法做到如此理想的线性扩展的 随着压力的变化 吞吐量和性能都可能越来越差

可扩展性指标对于容量规范非常有用 它可以提供其他测试无法提供的信息 来帮助发现应用的瓶颈 比如 如果系统是基于单个用户的响应时间测试(这是一个很糟糕的测试策略)设计的 虽然测试的结果很好 但当并发度增加时 系统的性能有可能变得非常糟糕 而一个基于不断增加用户连接的情况下的响应时间测试则可以发现这个问题

一些任务 比如从细粒度数据创建汇总表的批量工作 需要的是周期性的快速响应时间 当然也可以测试这些任务纯粹的响应时间 但要注意考虑这些任务之间的相互影响 批量工作可能导致相互之间有影响的查询性能变差 反之亦然

归根结底 应该测试那些对用户来说最重要的指标 因此应该尽可能地去收集一些需求 比如 什么样的响应时间是可以接受的 期待多少的并发性 等等 然后基于这些需求来设计基准测试 避免目光短浅地只关注部分指标 而忽略其他指标

返回目录 高性能MySQL

编辑推荐

ASP NET开发培训视频教程

数据仓库与数据挖掘培训视频教程

lishixinzhi/Article/program/MySQL/201311/29741


分享文章:怎么测试mysql性能 检查mysql是否正常
地址分享:http://kswsj.cn/article/ddeohjp.html

其他资讯