mysql大数据怎么分页 mysql如何做大数据分析-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

mysql大数据怎么分页 mysql如何做大数据分析

mysql 数据量大的表如何做分页查询

直接用limit start, count分页语句, 也是我程序中用的方法:

成都创新互联公司自2013年起,公司以网站制作、做网站、系统开发、网络推广、文化传媒、企业宣传、平面广告设计等为主要业务,适用行业近百种。服务企业客户超过千家,涉及国内多个省份客户。拥有多年网站建设开发经验。为企业提供专业的网站建设、创意设计、宣传推广等服务。 通过专业的设计、独特的风格,为不同客户提供各种风格的特色服务。

select * from product limit start, count

当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下:

select * from product limit 10, 20 0.016秒

select * from product limit 100, 20 0.016秒

select * from product limit 1000, 20 0.047秒

select * from product limit 10000, 20 0.094秒

我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右) select * from product limit 400000, 20 3.229秒

再看我们取最后一页记录的时间

select * from product limit 866613, 20 37.44秒

难怪搜索引擎抓取我们页面的时候经常会报超时,像这种分页最大的页码页显然这种时

间是无法忍受的。

从中我们也能总结出两件事情:

1)limit语句的查询时间与起始记录的位置成正比

2)mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

求教,MYSQL大数据量分页哪些好办法

分页查询一般 DBA 想到的办法是在某个(如ID,create_time)字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

因为如果当 LIMIT 子句变成 “LIMIT 1000000,10” 时,你会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:

SELECT *

FROM 表

WHERE create_time '2017-07-04 09:00:00'

ORDER BY create_time limit 10;

这样查询时间基本固定,不会随着数据量的增长而发生变化。

MySQL百万级数据量分页查询方法及其优化建议

offset+limit方式的分页查询,当数据表超过100w条记录,性能会很差。

主要原因是offset limit的分页方式是从头开始查询,然后舍弃前offset个记录,所以offset偏移量越大,查询速度越慢。

比如: 读第10000到10019行元素(pk是主键/唯一键).

使用order by id可以在查询时使用主键索引。

但是这种方式在id为uuid的时候就会出现问题。可以使用where in的方式解决:

带条件的查询:

如果在分页查询中添加了where条件例如 type = 'a’这样的条件,sql变成 :

这种情况因为type没有使用索引也会导致查询速度变慢。但是只添加type为索引查询速度还是很慢,是因为查询的数据量太多了。这个时候考虑添加组合索引,组合索引的顺序要where条件字段在前,id在后,如 (type,id),因为组合索引查询时用到了type索引,而type跟id是组合索引的关系,如果只select id ,那么直接就可以按组合索引返回id,而不需要再进行一次查询去返回id

使用uuid作为主键不仅会带来性能上的问题,在查询时也会遇到问题。

因为在使用select id from table limit 10000,10 查询id数据时,默认是对id进行排序,返回的是排序后的id结果,如果我们想按插入顺序查询结果,这样查询出来的结果就与我们的需求不相符。

聚集索引跟非聚集索引:聚集索引类似与新华字典的拼音,根据拼音搜索到的信息都是连续的,可以很快获取到它前后的信息。非聚集索引类似于部首查询,信息存放的位置可能不在一个区域。对经常使用范围查询的字段考虑使用聚集索引。

InnoDB中索引分为聚簇索引(主键索引)和非聚簇索引(非主键索引),聚簇索引的叶子节点中保存的是整行记录,而非聚簇索引的叶子节点中保存的是该行记录的主键的值。

如果您的表上定义有主键,该主键索引是聚集索引。

如果你不定义为您的表的主键时,MySQL取第一个唯一索引(unique)而且只含非空列(NOT NULL)作为主键,InnoDB使用它作为聚集索引。

如果没有这样的列,InnoDB就自己产生一个这样的ID值,

优先选index key_len小的索引进行count(*),尽量不使用聚簇索引

在没有where条件的情况下,count(*)和count(常量),如果有非聚簇索引,mysql会自动选择非聚簇索引,因为非聚簇索引所占的空间小,如果没有非聚簇索引会使用聚集索引。count(primary key)主键id为聚集索引,使用聚集索引。有where条件的情况下,是否使用索引会根据where条件判断。

MySQL分页的sql语言怎么写?

1、首先我们建立一个表表的数据,这个表里有25条数据,id从1到25。(下图是部分截图)

2、要分页数据,首先我们假设一页有10条数据,我们可以用mysql的limit关键字来限定返回多少条数据。并且用orderby来排序数据,这里用id来排序。所以第一页的sql可以如图这样写。

3、执行后得到的数据如图,就是id从1到10的前10条数据,因为我们是按id升序来排序的。

4、上面第一页的sql是简化的写法,完整的写法如图,得到的结果和上图的一模一样。代码里limit0,10的意思是从第一条数据开始,取10条数据。(注意的是第一条数据是从0开始的)

5、那么第二页的数据,关键是要知道是从哪一条数据开始,可以用这个公式得到:(页码-1) *每页显示多少条,即(2-1)*10=10,所以sql语句如图,limit10,10。

6、执行后,结果正确,得到id从11到20的10条数据。

7、同理第三页数据的sql如图,br/就是limit20,10。

8、查询的结果如图,因为这页只剩下5条数据了,所以只显示5条数据。如果你有更多页的数据,后面的数据只需要按上面的公式,得到从哪行开始,就可以写对应的sql语句了。


网页标题:mysql大数据怎么分页 mysql如何做大数据分析
URL链接:http://kswsj.cn/article/ddishph.html

其他资讯