pythonr2函数 python repr函数用法-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

pythonr2函数 python repr函数用法

python2 中 函数isalnum(),判断为什么都是True

s=input("please inupt string")

在宁强等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供做网站、成都做网站 网站设计制作按需网站策划,公司网站建设,企业网站建设,成都品牌网站建设,全网营销推广,成都外贸网站制作,宁强网站建设费用合理。

print(s.isdigit()) #用isdigit函数判断是否数字

print(s.isalpha()) #isalpha判断是否字母

print(not (s.isalpha() or s.isdigit()) and s.isalnum()) #isalnum判断是否数字和字母的组合

Python常用的正则表达式处理函数详解

正则表达式是一个特殊的字符序列,用于简洁表达一组字符串特征,检查一个字符串是否与某种模式匹配,使用起来十分方便。

在Python中,我们通过调用re库来使用re模块:

import re

下面介绍Python常用的正则表达式处理函数。

re.match函数

re.match 函数从字符串的起始位置匹配正则表达式,返回match对象,如果不是起始位置匹配成功的话,match()就返回None。

re.match(pattern, string, flags=0)

pattern:匹配的正则表达式。

string:待匹配的字符串。

flags:标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。具体参数为:

re.I:忽略大小写。

re.L:表示特殊字符集 \w, \W, \b, \B, \s, \S 依赖于当前环境。

re.M:多行模式。

re.S:即 . ,并且包括换行符在内的任意字符(. 不包括换行符)。

re.U:表示特殊字符集 \w, \W, \b, \B, \d, \D, \s, \S 依赖于 Unicode 字符属性数据库。

re.X:为了增加可读性,忽略空格和 # 后面的注释。

import re #从起始位置匹配 r1=re.match('abc','abcdefghi') print(r1) #不从起始位置匹配 r2=re.match('def','abcdefghi') print(r2)

运行结果:

其中,span表示匹配成功的整个子串的索引。

使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

group(num):匹配的整个表达式的字符串,group() 可以一次输入多个组号,这时它将返回一个包含那些组所对应值的元组。

groups():返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。

import re s='This is a demo' r1=re.match(r'(.*) is (.*)',s) r2=re.match(r'(.*) is (.*?)',s) print(r1.group()) print(r1.group(1)) print(r1.group(2)) print(r1.groups()) print() print(r2.group()) print(r2.group(1)) print(r2.group(2)) print(r2.groups())

运行结果:

上述代码中的(.*)和(.*?)表示正则表达式的贪婪匹配与非贪婪匹配。

re.search函数

re.search函数扫描整个字符串并返回第一个成功的匹配,如果匹配成功则返回match对象,否则返回None。

re.search(pattern, string, flags=0)

pattern:匹配的正则表达式。

string:待匹配的字符串。

flags:标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

import re #从起始位置匹配 r1=re.search('abc','abcdefghi') print(r1) #不从起始位置匹配 r2=re.search('def','abcdefghi') print(r2)

运行结果:

使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

group(num=0):匹配的整个表达式的字符串,group() 可以一次输入多个组号,这时它将返回一个包含那些组所对应值的元组。

groups():返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。

import re s='This is a demo' r1=re.search(r'(.*) is (.*)',s) r2=re.search(r'(.*) is (.*?)',s) print(r1.group()) print(r1.group(1)) print(r1.group(2)) print(r1.groups()) print() print(r2.group()) print(r2.group(1)) print(r2.group(2)) print(r2.groups())

运行结果:

从上面不难发现re.match与re.search的区别:re.match只匹配字符串的起始位置,只要起始位置不符合正则表达式就匹配失败,而re.search是匹配整个字符串,直到找到一个匹配为止。

re.compile 函数

compile 函数用于编译正则表达式,生成一个正则表达式对象,供 match() 和 search() 这两个函数使用。

re.compile(pattern[, flags])

pattern:一个字符串形式的正则表达式。

flags:可选,表示匹配模式,比如忽略大小写,多行模式等。

import re #匹配数字 r=re.compile(r'\d+')  r1=r.match('This is a demo') r2=r.match('This is 111 and That is 222',0,27) r3=r.match('This is 111 and That is 222',8,27)   print(r1) print(r2) print(r3)

运行结果:

findall函数

搜索字符串,以列表形式返回正则表达式匹配的所有子串,如果没有找到匹配的,则返回空列表。

需要注意的是,match 和 search 是匹配一次,而findall 匹配所有。

findall(string[, pos[, endpos]])

string:待匹配的字符串。

pos:可选参数,指定字符串的起始位置,默认为0。

endpos:可选参数,指定字符串的结束位置,默认为字符串的长度。

import re #匹配数字 r=re.compile(r'\d+')  r1=r.findall('This is a demo') r2=r.findall('This is 111 and That is 222',0,11) r3=r.findall('This is 111 and That is 222',0,27)   print(r1) print(r2) print(r3)

运行结果:

re.finditer函数

和 findall 类似,在字符串中找到正则表达式所匹配的所有子串,并把它们作为一个迭代器返回。

re.finditer(pattern, string, flags=0)

pattern:匹配的正则表达式。

string:待匹配的字符串。

flags:标志位,用于控制正则表达式的匹配方式,如是否区分大小写,多行匹配等。

import re  r=re.finditer(r'\d+','This is 111 and That is 222') for i in r:   print (i.group())

运行结果:

re.split函数

将一个字符串按照正则表达式匹配的子串进行分割后,以列表形式返回。

re.split(pattern, string[, maxsplit=0, flags=0])

pattern:匹配的正则表达式。

string:待匹配的字符串。

maxsplit:分割次数,maxsplit=1分割一次,默认为0,不限次数。

flags:标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等。

import re  r1=re.split('\W+','This is 111 and That is 222')  r2=re.split('\W+','This is 111 and That is 222',maxsplit=1)  r3=re.split('\d+','This is 111 and That is 222')  r4=re.split('\d+','This is 111 and That is 222',maxsplit=1)  print(r1) print(r2) print(r3) print(r4)

运行结果:

re.sub函数

re.sub函数用于替换字符串中的匹配项。

re.sub(pattern, repl, string, count=0, flags=0)

pattern:正则中的模式字符串。

repl:替换的字符串,也可为一个函数。

string:要被查找替换的原始字符串。

count:模式匹配后替换的最大次数,默认0表示替换所有的匹配。

import re  r='This is 111 and That is 222' # 删除字符串中的数字 r1=re.sub(r'\d+','',r) print(r1) # 删除非数字的字符串  r2=re.sub(r'\D','',r) print(r2)

运行结果:

到此这篇关于Python常用的正则表达式处理函数详解的文章就介绍到这了,希望大家以后多多支持!

如何用python实现含有虚拟自变量的回归

利用python进行线性回归

理解什么是线性回归

线性回归也被称为最小二乘法回归(Linear Regression, also called Ordinary Least-Squares (OLS) Regression)。它的数学模型是这样的:

y = a+ b* x+e

其中,a 被称为常数项或截距;b 被称为模型的回归系数或斜率;e 为误差项。a 和 b 是模型的参数。

当然,模型的参数只能从样本数据中估计出来:

y'= a' + b'* x

我们的目标是选择合适的参数,让这一线性模型最好地拟合观测值。拟合程度越高,模型越好。

那么,接下来的问题就是,我们如何判断拟合的质量呢?

这一线性模型可以用二维平面上的一条直线来表示,被称为回归线。

模型的拟合程度越高,也即意味着样本点围绕回归线越紧密。

如何计算样本点与回归线之间的紧密程度呢?

高斯和勒让德找到的方法是:被选择的参数,应该使算出来的回归线与观测值之差的平房和最小。用函数表示为:

这被称为最小二乘法。最小二乘法的原理是这样的:当预测值和实际值距离的平方和最小时,就选定模型中的两个参数(a 和 b)。这一模型并不一定反映解释变量和反应变量真实的关系。但它的计算成本低;相比复杂模型更容易解释。

模型估计出来后,我们要回答的问题是:

我们的模型拟合程度如何?或者说,这个模型对因变量的解释力如何?(R2)

整个模型是否能显著预测因变量的变化?(F 检验)

每个自变量是否能显著预测因变量的变化?(t 检验)

首先回答第一个问题。为了评估模型的拟合程度如何,我们必须有一个可以比较的基线模型。

如果让你预测一个人的体重是多少?在没有任何额外信息的情况下,你可能会用平均值来预测,尽管会存在一定误差,但总比瞎猜好。

现在,如果你知道他的身高信息,你的预测值肯定与平均值不一样。额外信息相比平均值更能准确地预测被预测的变量的能力,就代表模型的解释力大小。

上图中,SSA 代表由自变量 x 引起的 y 的离差平方和,即回归平方和,代表回归模型的解释力;SSE 代表由随机因素引起的 y 的离差平方和,即剩余平方和,代表回归模型未能解释的部分;SST 为总的离差平方和,即我们仅凭 y 的平均值去估计 y 时所产生的误差。

用模型能够解释的变异除以总的变异就是模型的拟合程度:

R2=SSA/SST=1-SSE

R2(R 的平方)也被称为决定系数或判定系数。

第二个问题,我们的模型是否显著预测了 y 的变化?

假设 y 与 x 的线性关系不明显,那么 SSA 相对 SSE 占有较大的比例的概率则越小。换句话说,在 y 与 x 无线性关系的前提下,SSA 相对 SSE 的占比越高的概率是越小的,这会呈现一定的概率分布。统计学家告诉我们它满足 F 分布,就像这样:

如果 SSA 相对 SSE 占比较大的情况出现了,比如根据 F 分布,这个值出现的概率小于 5%。那么,我们最好是拒绝 y 与 x 线性关系不显著的原始假设,认为二者存在显著的线性关系较为合适。

第三个问题,每个自变量是否能显著预测因变量的变化?换句话说,回归系数是否显著?

回归系数的显著性检验是围绕回归系数的抽样分布(t 分布)来进行的,推断过程类似于整个模型的检验过程,不赘言。

实际上,对于只有一个自变量的一元线性模型,模型的显著性检验和回归系数的检验是一致的,但对于多元线性模型来说,二者就不能等价了。

利用 statsmodels 进行最小二乘回归

#导入相应模块

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: import statsmodels.api as sm

#将数据导入 pandas 的 dataframe 对象,第一列(年份)作为行标签

In [4]: df=pd.read_csv('/Users/xiangzhendong/Downloads/vincentarelbundock-Rdatasets-1218370/csv/datasets/longley.csv', index_col=0)

#查看头部数据

In [5]: df.head()

Out[5]:

GNP.deflator      GNP  Unemployed  Armed.Forces  Population  Year  \

1947          83.0  234.289       235.6         159.0     107.608  1947

1948          88.5  259.426       232.5         145.6     108.632  1948

1949          88.2  258.054       368.2         161.6     109.773  1949

1950          89.5  284.599       335.1         165.0     110.929  1950

1951          96.2  328.975       209.9         309.9     112.075  1951

Employed

1947    60.323

1948    61.122

1949    60.171

1950    61.187

1951    63.221

#设置预测变量和结果变量,用 GNP 预测 Employed

In [6]: y=df.Employed #结果变量

In [7]: X=df.GNP #预测变量

#为模型增加常数项,即回归线在 y 轴上的截距

In [8]: X=sm.add_constant(X)

#执行最小二乘回归,X 可以是 numpy array 或 pandas dataframe(行数等于数据点个数,列数为预测变量个数),y 可以是一维数组(numpy array)或 pandas series

In [10]: est=sm.OLS(y,X)

使用 OLS 对象的 fit() 方法来进行模型拟合

In [11]: est=est.fit()

#查看模型拟合的结果

In [12]: est.summary()

Out[12]:

#查看最终模型的参数

In [13]: est.params

Out[13]:

const    51.843590

GNP       0.034752

dtype: float64

#选择 100 个从最小值到最大值平均分布(equally spaced)的数据点

In [14]: X_prime=np.linspace(X.GNP.min(), X.GNP.max(),100)[:,np.newaxis]

In [15]: X_prime=sm.add_constant(X_prime)

#计算预测值

In [16]: y_hat=est.predict(X_prime)

In [17]: plt.scatter(X.GNP, y, alpha=0.3) #画出原始数据

#分别给 x 轴和 y 轴命名

In [18]: plt.xlabel("Gross National Product")

In [19]: plt.ylabel("Total Employment")

In [20]: plt.plot(X_prime[:,1], y_hat, 'r', alpha=0.9) #添加回归线,红色

多元线性回归(预测变量不止一个)

我们用一条直线来描述一元线性模型中预测变量和结果变量的关系,而在多元回归中,我们将用一个多维(p)空间来拟合多个预测变量。下面表现了两个预测变量的三维图形:商品的销量以及在电视和广播两种不同媒介的广告预算。

数学模型是:

Sales = beta_0 + beta_1*TV + beta_2*Radio

图中,白色的数据点是平面上的点,黑色的数据点事平面下的点。平面的颜色是由对应的商品销量的高低决定的,高是红色,低是蓝色。

利用 statsmodels 进行多元线性回归

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import statsmodels.api as sm

In [4]: df_adv=pd.read_csv('g.csv',index_col=0)

In [6]: X=df_adv[['TV','Radio']]

In [7]: y=df_adv['Sales']

In [8]: df_adv.head()

Out[8]:

TV  Radio  Newspaper  Sales

1  230.1   37.8       69.2   22.1

2   44.5   39.3       45.1   10.4

3   17.2   45.9       69.3    9.3

4  151.5   41.3       58.5   18.5

5  180.8   10.8       58.4   12.9

In [9]: X=sm.add_constant(X)

In [10]: est=sm.OLS(y,X).fit()

In [11]: est.summary()

Out[11]:

你也可以使用 statsmodels 的 formula 模块来建立多元回归模型

In [12]: import statsmodels.formula.api as smf

In [13]: est=smf.ols(formula='Sales ~ TV + Radio',data=df_adv).fit()

处理分类变量

性别或地域都属于分类变量。

In [15]: df= pd.read_csv('httd.edu/~tibs/ElemStatLearn/datasets/SAheart.data', index_col=0)

In [16]: X=df.copy()

利用 dataframe 的 pop 方法将 chd 列单独提取出来

In [17]: y=X.pop('chd')

In [18]: df.head()

Out[18]:

sbp  tobacco   ldl  adiposity  famhist  typea  obesity  alcohol  \

row.names

1          160    12.00  5.73      23.11  Present     49    25.30    97.20

2          144     0.01  4.41      28.61   Absent     55    28.87     2.06

3          118     0.08  3.48      32.28  Present     52    29.14     3.81

4          170     7.50  6.41      38.03  Present     51    31.99    24.26

5          134    13.60  3.50      27.78  Present     60    25.99    57.34

age  chd

row.names

1           52    1

2           63    1

3           46    0

4           58    1

5           49    1

In [19]: y.groupby(X.famhist).mean()

Out[19]:

famhist

Absent     0.237037

Present    0.500000

Name: chd, dtype: float64

In [20]: import statsmodels.formula.api as smf

In [21]: df['famhist_ord']=pd.Categorical(df.famhist).labels

In [22]: est=smf.ols(formula="chd ~ famhist_ord", data=df).fit()

分类变量的编码方式有许多,其中一种编码方式是虚拟变量编码(dummy-encoding),就是把一个 k 个水平的分类变量编码成 k-1 个二分变量。在 statsmodels 中使用 C 函数实现。

In [24]: est=smf.ols(formula="chd ~ C(famhist)", data=df).fit()

In [26]: est.summary()

Out[26]:

处理交互作用

随着教育年限(education)的增长,薪酬 (wage) 会增加吗?这种影响对男性和女性而言是一样的吗?

这里的问题就涉及性别与教育年限的交互作用。

换言之,教育年限对薪酬的影响是男女有别的。

#导入相关模块

In [1]: import pandas as pd

In [2]: import numpy as np

In [4]: import statsmodels.api as sm

#导入数据,存入 dataframe 对象

In [5]: df=pd.read_csv('/Users/xiangzhendong/Downloads/pydatafromweb/wages.csv')

In [6]: df[['Wage','Education','Sex']].tail()

Out[6]:

Wage  Education  Sex

529  11.36         18    0

530   6.10         12    1

531  23.25         17    1

532  19.88         12    0

533  15.38         16    0

由于性别是一个二分变量,我们可以绘制两条回归线,一条是 sex=0(男性),一条是 sex=1(女性)

#绘制散点图

In [7]: plt.scatter(df.Education,df.Wage, alpha=0.3)

In [9]: plt.xlabel('education')

In [10]: plt.ylabel('wage')

#linspace 的作用是生成从最小到最大的均匀分布的 n 个数

In [17]: education_linspace=np.linspace(df.Education.min(), df.Education.max(),100)

In [12]: import statsmodels.formula.api as smf

In [13]: est=smf.ols(formula='Wage ~ Education + Sex', data=df).fit()

In [18]: plt.plot(education_linspace, est.params[0]+est.params[1]education_linspace+est.params[2]0, 'r')

In [19]: plt.plot(education_linspace, est.params[0]+est.params[1]education_linspace+est.params[2]1, 'g')

以上两条线是平行的。这是因为分类变量只影响回归线的截距,不影响斜率。

接下来我们可以为回归模型增加交互项来探索交互效应。也就是说,对于两个类别,回归线的斜率是不一样的。

In [32]: plt.scatter(df.Education,df.Wage, alpha=0.3)

In [33]: plt.xlabel('education')

In [34]: plt.ylabel('wage')

#使用*代表我们的回归模型中除了交互效应,也包括两个变量的主效应;如果只想看交互效应,可以用:代替,但通常不会只看交互效应

In [35]: est=smf.ols(formula='Wage ~ Sex*Education', data=df).fit()

In [36]: plt.plot(education_linspace, est.params[0]+est.params[1]0+est.params[2]education_linspace+est.params[3]0education_linspace, 'r')

In [37]: plt.plot(education_linspace, est.params[0]+est.params[1]1+est.params[2]education_linspace+est.params[3]1education_linspace, 'g')

参考资料:

DataRobot | Ordinary Least Squares in Python

DataRoboe | Multiple Regression using Statsmodels

AnalyticsVidhya | 7 Types of Regression Techniques you should know!

如何 计算 多项式 拟合中的 r2值 python

首先需要两组数,变量和它对应的函数值。 将已有数据插入图表-版式-趋势线-多项式-输入项数-勾选下方“显示公式”。


网站名称:pythonr2函数 python repr函数用法
标题网址:http://kswsj.cn/article/dojedgd.html

其他资讯