使用Python怎么对图像进行膨胀与腐蚀处理-创新互联-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

使用Python怎么对图像进行膨胀与腐蚀处理-创新互联

本篇文章给大家分享的是有关使用Python怎么对图像进行膨胀与腐蚀处理,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

创新互联公司专注于集安网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供集安营销型网站建设,集安网站制作、集安网页设计、集安网站官网定制、小程序开发服务,打造集安网络公司原创品牌,更为您提供集安网站排名全网营销落地服务。

膨胀与腐蚀是图像处理中两种最基本的形态学操作,膨胀将目标点融合到背景中,向外部扩展,腐蚀与膨胀意义相反,消除连通的边界,使边界向内收缩。在本文中我们将了解使用内核的图像膨胀与腐蚀的基本原理。

让我们开始吧,同样我们需要导入必需的库。

import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.draw import circle
from skimage.morphology import erosion, dilation

首先让我们创建一个容易操作的形状--一个简单的圆。

circ_image = np.zeros((100, 100))
circ_image[circle(50, 50, 25)] = 1
imshow(circ_image);

使用Python怎么对图像进行膨胀与腐蚀处理

现在让我们定义一个内核。

cross = np.array([[0,1,0],
   [1,1,1],
   [0,1,0]])
imshow(cross, cmap = 'gray');

使用Python怎么对图像进行膨胀与腐蚀处理

将腐蚀函数应用到创建的圆上。

eroded_circle = erosion(circ_image, cross)
imshow(eroded_circle);

使用Python怎么对图像进行膨胀与腐蚀处理

图像看起来几乎一模一样。要看到那些微小的差异,我们必须仔细查看图像。

linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(eroded_circle, cmap = 'gray');
ax[1].set_title('Eroded', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

使用Python怎么对图像进行膨胀与腐蚀处理

我们可以看到,被腐蚀的圆已经略微缩小了。这就是腐蚀一个对象的意义。如果我们对腐蚀函数进行迭代,它的效果会变得非常明显。

def multi_erosion(image, kernel, iterations):
 for i in range(iterations):
 image = erosion(image, kernel)
 return image
ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Iterations : {ites[n]}', fontsize = 16)
 new_circle = multi_erosion(circ_image, cross, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

使用Python怎么对图像进行膨胀与腐蚀处理

上图清楚地显示了图像是如何被腐蚀的。现在让我们尝试改变内核,如果我们使用水平线和垂直线内核代替交叉内核会怎样呢?

h_line = np.array([[0,0,0],
   [1,1,1],
   [0,0,0]])
v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0]])
fig, ax = plt.subplots(1, 2, figsize=(15, 5))
ax[0].imshow(h_line, cmap='gray');
ax[1].imshow(v_line, cmap='gray');
fig.tight_layout()

使用Python怎么对图像进行膨胀与腐蚀处理

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

使用Python怎么对图像进行膨胀与腐蚀处理

正如我们所看到的,水平和垂直的腐蚀以不同的方式影响着图像。使用水平内核我们得到一个垂直方向细长的圆;而使用垂直内核我们得到一个水平方向细长的圆。

你可能会奇怪,为什么使用垂直内核,会得到一个水平方向细长的圆呢?

因为腐蚀函数是分别寻找垂直和水平的线条,并慢慢把它们削掉。膨胀函数将会让我们更清晰的理解这一点。

使用下面的函数设置处理的图像、膨胀内核以及迭代次数。

def multi_dilation(image, kernel, iterations):
 for i in range(iterations):
 image = dilation(image, kernel)
 return image

让我们看一下处理后的图像有什么不同。

dilated_circle = multi_dilation(circ_image, cross, 1)
linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(dilated_circle, cmap = 'gray');
ax[1].set_title('Dilated', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

使用Python怎么对图像进行膨胀与腐蚀处理

可以清楚地看到圆现在已经越过了红线,这清楚地表明它已经扩大了。现在让我们对水平和垂直扩张进行迭代。

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 
   12)
 new_circle = multi_dilation(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_dilation(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

使用Python怎么对图像进行膨胀与腐蚀处理

现在可以非常清楚地看到,水平扩张增加了图像宽度,而垂直扩张增加了图像高度。

现在我们已经了解了膨胀与腐蚀的基本原理,下面来看一个相对复杂的图像。

complex_image = imread('complex_image.png')
imshow(complex_image);

使用Python怎么对图像进行膨胀与腐蚀处理

在上面的图像中,我们看到了水平线、垂直线和圆的混合物。我们可以使用膨胀和腐蚀函数孤立地观察每一种形状。

为了得到圆,我们可以先腐蚀垂直的线,再腐蚀水平的线。但要记住最后要对图像进行膨胀,因为腐蚀函数同样腐蚀了圆。

step_1 = multi_erosion(complex_image, h_line,3)
step_2 = multi_erosion(step_1, v_line,3)
step_3 = multi_dilation(step_2, h_line,3)
step_4 = multi_dilation(step_3, v_line,3)
steps = [step_1, step_2, step_3, step_4]
names = ['Step 1', 'Step 2', 'Step 3', 'Step 4']
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

使用Python怎么对图像进行膨胀与腐蚀处理

同样,下面的代码将得到水平的线。

step_1 = multi_erosion(complex_image, cross, 20)
step_2 = multi_dilation(step_1, h_line, 20)
step_3 = multi_dilation(step_2, v_line,2)
steps = [step_1, step_2, step_3]
names = ['Step 1', 'Step 2', 'Step 3']
fig, ax = plt.subplots(1, 3, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

使用Python怎么对图像进行膨胀与腐蚀处理

为了得到垂直的线,我们可以创建一个新的内核。

long_v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0]])
step_1 = multi_erosion(complex_image, long_v_line, 10)
step_2 = multi_dilation(step_1 ,long_v_line, 10)
steps = [step_1, step_2]
names = ['Step 1', 'Step 2']
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

使用Python怎么对图像进行膨胀与腐蚀处理

注意,内核并不局限于本文中提到的这几种,可以根据不同的需求自己定义合适的内核。

以上就是使用Python怎么对图像进行膨胀与腐蚀处理,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。


当前文章:使用Python怎么对图像进行膨胀与腐蚀处理-创新互联
分享链接:http://kswsj.cn/article/dsdeie.html

其他资讯