nosql检索,Nosql-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

nosql检索,Nosql

深入研究查询Elasticsearch,过滤查询和全文搜索

或如何了解缺少哪些官方文件

创新互联建站于2013年成立,先为鸡泽等服务建站,鸡泽等地企业,进行企业商务咨询服务。为鸡泽企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

如果我不得不用一个短语来描述Elasticsearch,我会说:

目前,Elasticsearch在十大最受欢迎的开源技术中。 公平地说,它结合了许多本身并不独特的关键功能,但是,当结合使用时,它可以成为最佳的搜索引擎/分析平台。

更准确地说,由于以下功能的结合,Elasticsearch变得如此流行:

· 搜索相关性评分

· 全文搜索

· 分析(汇总)

· 无模式(对数据模式无限制),NoSQL,面向文档

· 丰富的数据类型选择

· 水平可扩展

· 容错的

通过与Elasticsearch进行合作,我很快意识到,官方文档看起来更像是所谓文档的"挤压"。 我不得不在Google上四处搜寻,并且大量使用stackowerflow,所以我决定编译这篇文章中的所有信息。

在本文中,我将主要撰写有关查询/搜索Elasticsearch集群的文章。 您可以通过多种不同的方式来实现大致相同的结果,因此,我将尝试说明每种方法的利弊。

更重要的是,我将向您介绍两个重要的概念-查询和过滤器上下文-在文档中没有很好地解释。 我将为您提供一组规则,以决定何时使用哪种方法更好。

在阅读本文后,如果我只想让您记住一件事,那就是:

当我们谈论Elasticsearch时,总会有一个相关性分数。 相关性分数是严格的正浮点数,表示每个文档满足搜索标准的程度。 该分数是相对于分配的最高分数的,因此,分数越高,文档与搜索条件的相关性越好。

但是,过滤器和查询是您在编写查询之前应该能够理解的两个不同概念。

一般来说,过滤器上下文是一个"是/否"选项,其中每个文档都与查询匹配或不匹配。 一个很好的例子是SQL WHERE,后面是一些条件。 SQL查询总是返回严格符合条件的行。 SQL查询无法返回歧义结果。

另一方面,Elasticsearch查询上下文显示了每个文档与您的需求的匹配程度。 为此,查询使用分析器查找最佳匹配。

经验法则是将过滤器用于:

· 是/否搜索

· 搜索精确值(数字,范围和关键字)

将查询用于:

· 结果不明确(某些文档比其他文档更适合)

· 全文搜索

此外,Elasticsearch将自动缓存过滤器的结果。

在第1部分和第2部分中,我将讨论查询(可以转换为过滤器)。 请不要将结构化和全文与查询和过滤器混淆-这是两件事。

结构化查询也称为术语级查询,是一组查询方法,用于检查是否应选择文档。 因此,在很多情况下,没有真正必要的相关性评分-文档匹配或不匹配(尤其是数字)。

术语级查询仍然是查询,因此它们将返回分数。

名词查询 Term Query

返回字段值与条件完全匹配的文档。 查询一词是SQL select * from table_name where column_name =...的替代方式

名词查询直接进入倒排索引,这可以使其快速进行。 在处理文本数据时,最好仅将term用于keyword字段。

名词查询默认情况下在查询上下文中运行,因此,它将计算分数。 即使所有返回的文档的分数相同,也将涉及其他计算能力。

带有过滤条件的 名词 查询

如果我们想加速名词查询并使其得到缓存,则应将其包装在constant_score过滤器中。

还记得经验法则吗? 如果您不关心相关性得分,请使用此方法。

现在,该查询没有计算任何相关性分数,因此,它更快。 而且,它是自动缓存的。

快速建议-对文本字段使用匹配而不是名词。

请记住,名词查询直接进入倒排索引。名词查询采用您提供的值并按原样搜索它,这就是为什么它非常适合查询未经任何转换存储的keyword字段。

多名词查询 Terms query

如您所料,多名词查询使您可以返回至少匹配一个确切名词的文档。

多名词查询在某种程度上是SQL select * from table_name where column_name is in...的替代方法

重要的是要了解,Elasticsearch中的查询字段可能是一个列表,例如{“ name”:[“ Odin”,“ Woden”,“ Wodan”]}。如果您执行的术语查询包含以下一个或多个,则该记录将被匹配-它不必匹配字段中的所有值,而只匹配一个。

与名词查询相同,但是这次您可以在查询字段中指定多少个确切术语。

您指定必须匹配的数量-一,二,三或全部。 但是,此数字是另一个数字字段。 因此,每个文档都应包含该编号(特定于该特定文档)。

返回查询字段值在定义范围内的文档。

等价于SQL select * from table_name where column_name is between...

范围查询具有自己的语法:

· gt 大于

· gte 大于或等于

· lt 小于

· lte 小于或等于

一个示例,该字段的值应≥4且≤17

范围查询也可以很好地与日期配合使用。

正则表达式查询返回其中字段与您的正则表达式匹配的文档。

如果您从未使用过正则表达式,那么我强烈建议您至少了解一下它是什么以及何时可以使用它。

Elasticsearch的正则表达式是Lucene的正则表达式。 它具有标准的保留字符和运算符。 如果您已经使用过Python的re软件包,那么在这里使用它应该不是问题。 唯一的区别是Lucene的引擎不支持^和$等锚运算符。

您可以在官方文档中找到regexp的完整列表。

除正则表达式查询外,Elsticsearch还具有通配符和前缀查询。从逻辑上讲,这两个只是regexp的特殊情况。

不幸的是,我找不到关于这三个查询的性能的任何信息,因此,我决定自己对其进行测试,以查看是否发现任何重大差异。

在比较使用rehexp和通配符查询时,我找不到性能上的差异。如果您知道有什么不同,请给我发消息。

由于Elasticsearch是无模式的(或没有严格的模式限制),因此当不同的文档具有不同的字段时,这是一种很常见的情况。 结果,有很多用途来了解文档是否具有某些特定字段。

全文查询适用于非结构化文本数据。 全文查询利用了分析器。 因此,我将简要概述Elasticsearch的分析器,以便我们可以更好地分析全文查询。

每次将文本类型数据插入Elasticsearch索引时,都会对其进行分析,然后存储在反向索引中。根据分析器的配置方式,这会影响您的搜索功能,因为分析器也适用于全文搜索。

分析器管道包括三个阶段:

总有一个令牌生成器和零个或多个字符和令牌过滤器。

1)字符过滤器按原样接收文本数据,然后可能在对数据进行标记之前对其进行预处理。 字符过滤器用于:

· 替换与给定正则表达式匹配的字符

· 替换与给定字符串匹配的字符

· 干净的HTML文字

2)令牌生成器将字符过滤器(如果有)之后接收到的文本数据分解为令牌。 例如,空白令牌生成器只是将文本分隔为空白(这不是标准的)。 因此,Wednesday is called after Woden, 将被拆分为[Wednesday, is, called, after, Woden.]。 有许多内置标记器可用于创建自定义分析器。

删除标点符号后,标准令牌生成器将使用空格分隔文本。 对于绝大多数语言来说,这是最中立的选择。

除标记化外,标记化器还执行以下操作:

· 跟踪令牌顺序,

· 注释每个单词的开头和结尾

· 定义令牌的类型

3)令牌过滤器对令牌进行一些转换。您可以选择将许多不同的令牌过滤器添加到分析器中。一些最受欢迎的是:

· 小写

· 词干(存在多种语言!)

· 删除重复

· 转换为等效的ASCII

· 模式的解决方法

· 令牌数量限制

· 令牌的停止列表(从停止列表中删除令牌)

标准分析器是默认分析器。 它具有0个字符过滤器,标准令牌生成器,小写字母和停止令牌过滤器。 您可以根据需要组成自定义分析器,但是内置分析器也很少。

语言分析器是一些最有效的即用型分析器,它们利用每种语言的细节来进行更高级的转换。 因此,如果您事先知道数据的语言,建议您从标准分析器切换为数据的一种语言。

全文查询将使用与索引数据时使用的分析器相同的分析器。更准确地说,您查询的文本将与搜索字段中的文本数据进行相同的转换,因此两者处于同一级别。

匹配查询是用于查询文本字段的标准查询。

我们可以将匹配查询称为名词查询的等效项,但适用于文本类型字段(而在处理文本数据时,名词应仅用于关键字类型字段)。

默认情况下,传递给查询参数的字符串(必需的一个)将由与应用于搜索字段的分析器相同的分析器处理。 除非您自己使用analyzer参数指定分析器。

当您指定要搜索的短语时,将对其进行分析,并且结果始终是一组标记。默认情况下,Elasticsearch将在所有这些标记之间使用OR运算符。这意味着至少应该有一场比赛-更多的比赛虽然会得分更高。您可以在运算符参数中将其切换为AND。在这种情况下,必须在文档中找到所有令牌才能将其返回。

如果要在OR和AND之间输入某些内容,则可以指定minimum_should_match参数,该参数指定应匹配的子句数。 可以数字和百分比指定。

模糊参数(可选)可让您忽略错别字。 Levenshtein距离用于计算。

如果您将匹配查询应用于关键字keyword字段,则其效果与词条查询相同。 更有趣的是,如果将存储在反向索引中的令牌的确切值传递给term查询,则它将返回与匹配查询完全相同的结果,但是会更快地返回到反向索引。

与匹配相同,但顺序和接近度很重要。 匹配查询不了解序列和接近度,因此,只有通过其他类型的查询才能实现词组匹配。

match_phrase查询具有slop参数(默认值为0),该参数负责跳过术语。 因此,如果您指定斜率等于1,则短语中可能会省略一个单词。

多重比对查询的功能与比对相同,唯一的不同是多重比对适用于多个栏位

· 字段名称可以使用通配符指定

· 默认情况下,每个字段均加权

· 每个领域对得分的贡献都可以提高

· 如果没有在fields参数中指定任何字段,那么将搜索所有符合条件的字段

有多种类型的multi_match。 我不会在这篇文章中描述它们,但是我将解释最受欢迎的:

best_fields类型(默认值)更喜欢在一个字段中找到来自搜索值的令牌的结果,而不是将搜索的令牌分配到不同字段中的结果。

most_fields与best_fields类型相反。

phrase类型的行为与best_fields相同,但会搜索与match_phrase类似的整个短语。

我强烈建议您查阅官方文档,以检查每个字段的得分计算准确度。

复合查询将其他查询包装在一起。 复合查询:

· 结合分数

· 改变包装查询的行为

· 将查询上下文切换到过滤上下文

· 以上任意一项

布尔查询将其他查询组合在一起。 这是最重要的复合查询。

布尔查询使您可以将查询上下文中的搜索与过滤器上下文搜索结合在一起。

布尔查询具有四个可以组合在一起的出现(类型):

· must或"必须满足该条款"

· should或"如果满足条款,则对相关性得分加分"

· 过滤器filter或"必须满足该条款,但不计算相关性得分"

· must_not或“与必须相反”,不会有助于相关度得分

必须和应该→查询上下文

过滤器和must_not→过滤器上下文

对于那些熟悉SQL的人,必须为AND,而应为OR运算符。 因此,必须满足must子句中的每个查询。

对于大多数查询,提升查询与boost参数相似,但并不相同。 增强查询将返回与肯定子句匹配的文档,并降低与否定子句匹配的文档的得分。

如我们在术语查询示例中先前看到的,constant_score查询将任何查询转换为相关性得分等于boost参数(默认值为1)的过滤器上下文。

让我知道是否您想阅读另一篇文章,其中提供了所有查询的真实示例。

我计划在Elasticsearch上发布更多文章,所以不要错过。

你已经读了很长的内容,所以如果你阅读到这里:

综上所述,Elasticsearch符合当今的许多用途,有时很难理解什么是最佳工具。

如果不需要相关性分数来检索数据,请尝试切换到过滤器上下文。

另外,了解Elasticsearch的工作原理也至关重要,因此,我建议您始终了解分析器的功能。

Elasticsearch中还有许多其他查询类型。 我试图描述最常用的。 我希望你喜欢它。

(本文翻译自kotartemiy ✔️的文章《Deep Dive into Querying Elasticsearch. Filter vs Query. Full-text search》,参考:)

如何使用mysql的全文索引搜索

你有没有想过如何使用搜索功能在所有整站中实现!互联网博客和网站,大多数都采用MySQL数据库。MySQL提供了一个美妙的方式实施一个小的搜索引擎,在您的网站(全文检索)。所有您需要做的是拥有的MySQL 4.x及以上。MySQL提供全文检索功能,我们可以用它来 ??实现搜索功能。

首先,让我们为我们的例子中设置一个示例表。我们将创建一个名为第一个表。

CREATE TABLE articles (

id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,

title VARCHAR(200),

body TEXT,

FULLTEXT (title,body)

);

在此表中还可以添加一些示例数据。执行后,插入查询。

INSERT INTO articles (title,body) VALUES

('MySQL Tutorial','DBMS stands for DataBase ...'),

('How To Use MySQL Well','After you went through a ...'),

('Optimizing MySQL','In this tutorial we will show ...'),

('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),

('MySQL vs. YourSQL','In the following database comparison ...'),

('MySQL Security','When configured properly, MySQL ...');

一旦样本数据是准备好,我们可以开始我们的全文检索功能。

自然语言全文搜索

尝试我们的示例表上执行下面的SELECT查询。

SELECT * FROM articles

WHERE MATCH (title,body) AGAINST ('database');

你就能看到结果如下:

在下面的数据库比较5 MySQL与YourSQL的...

MySQL教程DBMS 1代表数据库...

我们在上面的SQL查询(标题,正文)反对(“数据库”)的比赛,选择所有的记录,列标题和正文进行全文搜索。

您可以修改该查询,并创建您自己的版本,以自己的数据库中执行全文搜索。

布尔全文搜索

它可能发生,你要指定某些关键字在您的搜索条件。此外,您可能要忽略某些关键字。布尔全文搜索可以用来执行这些要求的全文检索。

检查下面的SELECT查询。

SELECT * FROM articles WHERE MATCH (title,body)

AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);

如果您发现上述选择查询,我们增加了布尔MODE反对()。这个查询将获取MySQL的关键字,但不YourSQL关键字的所有记录。请注意+和-我们以前指定的关键字!

在执行此功能,MySQL使用什么有时也被称为布尔逻辑作为暗示,其中:+代表与-代表不是[无操作员]暗示或

以下是几个例子布尔搜索条件。

“苹果香蕉

查找行至少包含两个词之一。

“+苹果+果汁”

寻找包含两个单词的行。

“+苹果Macintosh

查找行包含“苹果”,但排名的行,如果它们也包含“麦金塔”。

“+苹果Macintosh的”

查找行包含“苹果”这个词,而不是“麦金塔”。

'+苹果Macintosh的“

查找包含单词“苹果”的行,但如果该行也包含单词“麦金塔”,速度比如果行不低。这是“软”比“+苹果Macintosh电脑”,为“麦金塔”的存在,导致该行不能在所有返回的搜索。

'+苹果+(营业额馅饼)“

行包含“苹果”和“营业额”,或“苹果”和“馅饼”(任何顺序)的话,但排名“苹果的营业额”比“苹果馅饼“。

限制

支持全文检索的MyISAM表只。MySQL 4.1中,使用多个字符设置一个单一的表内的支持。然而,在一个FULLTEXT索引的所有列,必须使用相同的字符集和校对规则。MATCH()列列表必须匹配完全在一些列清单表的FULLTEXT索引定义,除非这场比赛()是在布尔模式。布尔模式搜索,可以做非索引列,虽然他们很可能是缓慢的。

怎么MySql添加全文索引

使用索引是数据库性能优化的必备技能之一。在MySQL数据库中,有四种索引:聚集索引(主键索引)、普通索引、唯一索引以及我们这里将要介绍的全文索引(FULLTEXT INDEX)。

全文索引(也称全文检索)是目前搜索引擎使用的一种关键技术。它能够利用「分词技术「等多种算法智能分析出文本文字中关键字词的频率及重要性,然后按照一定的算法规则智能地筛选出我们想要的搜索结果。在这里,我们就不追根究底其底层实现原理了,现在我们来看看在MySQL中如何创建并使用全文索引。

在MySQL中,创建全文索引相对比较简单。例如,我们有一个文章表(article),其中有主键ID(id)、文章标题(title)、文章内容(content)三个字段。现在我们希望能够在title和content两个列上创建全文索引,article表及全文索引的创建SQL语句如下:

--创建article表

CREATE TABLE article (

id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,

title VARCHAR(200),

content TEXT,

FULLTEXT (title, content) --在title和content列上创建全文索引

);

上面就是在创建表的同时建立全文索引的SQL示例。此外,如果我们想要给已经存在的表的指定字段创建全文索引,同样以article表为例,我们可以使用如下SQL语句进行创建:

--给现有的article表的title和content字段创建全文索引

--索引名称为fulltext_article

ALTER TABLE article

ADD FULLTEXT INDEX fulltext_article (title, content)

在MySQL中创建全文索引之后,现在就该了解如何使用了。众所周知,在数据库中进行模糊查询是使用LIKE关键字进行查询,例如:

SELECT * FROM article WHERE content LIKE '%查询字符串%'

那么,我们使用全文索引也是这样用的吗?当然不是,我们必须使用特有的语法才能使用全文索引进行查询。例如,我们想要在article表的title和content列中全文检索指定的查询字符串,可以如下编写SQL语句:

SELECT * FROM article WHERE MATCH(title, content) AGAINST('查询字符串')

强烈注意:MySQL自带的全文索引只能用于数据库引擎为MyISAM的数据表,如果是其他数据引擎,则全文索引不会生效。此外,MySQL自带的全文索引只能对英文进行全文检索,目前无法对中文进行全文检索。如果需要对包含中文在内的文本数据进行全文检索,我们需要采用Sphinx(斯芬克斯)/Coreseek技术来处理中文。本站将会在后续文章中对Sphinx以及Coreseek进行介绍。

备注1:目前,使用MySQL自带的全文索引时,如果查询字符串的长度过短将无法得到期望的搜索结果。MySQL全文索引所能找到的词的默认最小长度为4个字符。另外,如果查询的字符串包含停止词,那么该停止词将会被忽略。

备注2:如果可能,请尽量先创建表并插入所有数据后再创建全文索引,而不要在创建表时就直接创建全文索引,因为前者比后者的全文索引效率要高。

NoSQL 数据库:何时使用 NoSQL 与 SQL?

NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。

NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。

“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。

在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。

NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。

一些流行的 NoSQL 数据库包括:

随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。

传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。

有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。

但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。

一般来说,在以下情况下,NoSQL 比 SQL 更可取:

许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。

内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。

例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。

大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。

Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。

物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。

Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。

拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。

例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。

大数据下的地质资料信息存储架构设计

颉贵琴 胡晓琴

(甘肃省国土资源信息中心)

摘要 为推进我国地质资料信息服务集群化产业化工作,更大更好地发挥地质资料信息的价值,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。

关键词 大数据 地质资料 存储 NoSQL 双数据库

0 引言

新中国成立60多年来,我国形成了海量的地质资料信息,为国民经济和社会发展提供了重要支撑。但在地质资料管理方面长期存在资料信息分散、综合研究不够、数字化信息化程度不高、服务渠道不畅、服务能力不强等问题,使地质资料信息的巨大潜在价值未能得到充分发挥。为进一步提高地质工作服务国民经济和社会发展的能力,充分发挥地质资料信息的服务功能,扩大服务领域,国土资源部根据国内外地质工作的先进经验,做出了全面推进地质资料信息服务集群化产业化工作的部署。

目前,全国各省地质资料馆都在有条不紊地对本省成果、原始和实物地质资料进行清理,并对其中重要地质资料进行数字化和存储工作。然而,由于我国地质资源丰富,经过几十年的积累,已经形成了海量的地质资料,数据量早已经超过了几百太字节(TB)。在进行地质资料信息服务集群化工作中,随着共享数据量的不断增大,传统的数据存储方式和管理系统必然会展现出存储和检索方面的不足以及系统管理方面的缺陷。为了解决该问题,需要设计更加先进的数据存储架构来实现海量地质资料的存储。

而大数据(Big Data)作为近年来在云计算领域中出现的一种新型数据,科技工作者在不断的研究中,设计了适合大数据存储管理的非关系型数据库NoSQL进行大数据的存储和管理。本文将针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,提出一种海量地质资料存储架构,改进现有系统存储架构,以便于我国全面推进地质资料信息服务集群化产业化工作。

1 工作现状

1.1 国内外地质资料信息的存储现状

在美国,主要有两大地质资料公共服务平台,分别是地球科学信息中心(ESIC)、地球资源观测和科学中心(EROS),其目的是通过为社会和政府提供更加便利、快速的地质信息服务。20世纪90年代初,澳大利亚出台了国家地球科学填图协议,采用先进的科学方法和技术进行数据存储,从而形成了第二代澳大利亚陆地地质图。

目前,我国地质资料信息服务集群化产业化工作刚刚起步,虽然国土资源部信息中心已经开发了地质资料信息集群化共享服务平台,并倡导各地方用户使用该系统。但由于各个地方早期的工作背景不一致,因此各地方所使用的存储系统也不尽相同,主要有Access、SQL Server、Oracle、MySQL等系统。本文以国土资源部信息中心开发的地质资料信息集群化共享服务平台的存储系统MySQL为例说明。该系统是基于关系数据库管理系统MySQL的一套分布式存储检索系统。该系统的部署使得我国地质资料信息服务集群化产业化工作取得了重大进展,同时也为我国建立标准统一的地质资料信息共享服务平台和互联互通的网络服务体系奠定了坚实的基础。然而,该系统的研发并没有考虑到地质资料信息进一步集群化以及在未来地质资料信息进入大数据时代的信息共享和存储管理问题,也没有给出明确的解决方案。

1.2 大数据的存储架构介绍

大数据是近年在云计算领域中出现的一种新型数据,具有数据量大、数据结构不固定、类型多样、查询分析复杂等特点。传统关系型数据库管理系统在数据存储规模、检索效率等方面已不再适合大数据存储。NoSQL(Not Only SQL)是与关系数据库相对的一类数据库的总称。这些数据库放弃了对关系数据库的支持,转而采用灵活的、分布式的数据存储方式管理数据,从而可以满足大数据存储和处理的需求。NoSQL基于非关系型数据存储的设计理念,以键值对进行存储,采用的数据字的结构不固定,每一个元组可以有不一样的字段,且每个元组可以根据自己的需要增加一些自己的键值对,可以减少一些检索时间和存储空间。目前,应用广泛的 NoSQL 数据库有 Google BigTable、HBase、MongoDB、Neo4 j、Infinite Graph等。

2 大数据下的地质资料信息存储架构设计

根据国土资源部做出的全面推进地质资料信息服务集群化产业化工作的部署,国土资源部倡导全国地质资料馆使用国土资源部信息中心开发的地质资料信息集群化共享服务平台,实现地质资料信息的存储和共享。该系统采用了数据库管理系统MySQL作为数据存储系统。

为了与现有系统和现有的工作进行对接,并为将来地质资料进入大数据时代后的存储工作做准备,本文设计了一种能用于海量地质资料信息存储并且兼容MySQL的分布式的数据存储架构(图1)。

整个系统可以根据不同的用户等级分为不同的用户管理层,由于图幅限制,在图1 中仅仅展示了3级:国家级管理层(即共享服务平台用户层)、省级管理层以及市级管理层(可根据实际需要延伸至县级)。

每级管理层的每个用户可以单独管理一个服务器。如国土资源部信息中心可以单独管理一个服务器;甘肃省国土资源信息中心可以单独管理一个服务器,陕西省国土资源信息中心可以单独管理一个服务器;甘肃的若干个市级国土资源局可以根据需要分别管理各自的服务器。

在服务器上分别安装两套数据库管理系统,一套是原有的MySQL数据库管理系统,另一套是为大数据存储而配备的NoSQL型数据库管理系统。在服务器上还专门开发一个数据库管理器中间件,用于进行用户层和数据库的通信以及两套数据库之间的通信。

由于各个管理层都各自维护自己的数据库和数据。当用户需要进行数据存储时,他所影响的数据库仅仅是本地数据库,存储效率较高;当用户需要从多个数据库读取数据时,顶层的共享服务平台会根据用户需求进行任务分解,将任务分发给下层的管理层进行数据库读取,由于各个数据库并行读取,从而提高了数据库读取效率。

图1 大数据下的地质资料信息存储架构框图

2.1 用户管理层

用户管理层根据权限范围,分为多层(本文以3层为例)。

位于顶层的国家级管理层(共享服务平台用户层)负责用户访问权限的分配、与其直接关联的数据库的访问、下级管理层任务的分配等工作。

用户访问权限的分配是指为访问本共享服务平台的个人用户和单位用户分配数据的使用权限、安全性的设计等。

与其直接关联的数据库访问是指直接存储在其本地数据库上的数据的访问。在该数据库中不仅要存储所需要的地质资料,还要存储注册用户信息等数据。

下级管理层任务分配是指如果用户需要访问多个下层数据库,用户只需要输入查询这几个下层数据库的命令,而如何查找下层数据库则由该功能来完成。例如某用户要查找甘肃、陕西、上海、北京的铁矿分布图,则用户只需要输入这几个地方及铁矿等查询条件,系统将自动把各个省的数据库查询任务分派到下级管理层。

同理,位于下层的省级管理层和市级管理层除了没有用户访问权限功能外,其余功能与国家级管理层是相同的。各层之间的数据库通过互联网相互连接成分布式的数据库系统。

2.2 MySQL和NoSQL的融合

MySQL是关系型数据库,它支持SQL查询语言,而NoSQL是非关系型数据库,它不支持SQL查询语言。用户要想透明地访问这两套数据库,必须要设计数据库管理器中间件,作为用户访问数据库的统一入口和两套数据库管理系统的通信平台。本文所设计的数据库管理器简单模型如图2所示。

图2 数据库管理器模型

服务器管理器通过用户程序接口与应用程序进行通讯,通过MySQL数据库接口与MySQL服务器通讯,通过NoSQL数据库接口与NoSQL数据库接口通讯。当应用程序接口接收到一条数据库访问命令之后,交由数据库访问命令解析器进行命令解析,从而形成MySQL访问命令或者NoSQL访问命令,通过相应的数据库接口访问数据库;数据库返回访问结果后经过汇总,由应用程序接口返回给应用程序。

两套数据库可以通过双数据库通信协议进行相互的通信和互访。此通信协议的建立便于地质工作人员将已经存入MySQL数据库的不适合结构化存储的数据转存到NoSQL数据库中,从而便于系统的升级和优化。

2.3 系统的存储和检索模式

在本存储框架设计中,系统采用分布式网络存储模式,即采用可扩展的存储结构,利用分散在全国各地的多台独立的服务器进行数据存储。这种方式不仅分担了服务器的存储压力,提高了系统的可靠性和可用性,还易于进行系统扩展。另外,由于地质资料信息存储的特殊性,各地方用户的数据存储工作基本都是在本地服务器进行,很少通过网络进行远程存储,所以数据存储效率较高。

在一台数据库服务器上安装有MySQL和NoSQL型两套数据库管理系统,分别用于存储地质资料信息中的结构化数据和非结构化数据。其中,NoSQL型数据库作为主数据库,用于存储一部分结构化数据和全部的非结构化数据;而MySQL数据库作为辅助数据库,用于存储一部分结构化的数据,以及旧系统中已经存储的数据。使用两套数据库不仅可以存储结构化数据而且还可以适用于大数据时代地质资料信息的存储,因此系统具有很好的适应性和灵活性。

2.4 安全性设计

地质资料信息是国家的机密,地质工作人员必须要保证它的安全。地质资料信息进入数字化时代之后,地质资料常常在计算机以及网络上进行传输,地质资料信息的安全传输和保存更是地质工作人员必须关注和解决的问题。在本存储架构的设计中设计的安全问题主要有数据库存储安全、数据传输安全、数据访问安全等问题。

数据库设计时采用多边安全模型和多级安全模型阻止数据库中信息和数据的泄露来提高数据库的安全性能,以保障地质信息在数据库中的存储安全;当用户登录系统访问数据库时,必须进行用户甄别和实名认证,这主要是对用户的身份进行有效的识别,防止非法用户访问数据库;在对地质资料进行网络传输时,应该首先将数据进行加密,然后再进行网络传输,以防止地质信息在传输过程中被窃取。

3 结语

提高地质资料数字化信息化水平,是国外地质工作强国的普遍做法。为推进我国地质资料信息服务集群化产业化工作,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。该存储架构的设计只涉及了简单模型的构建,具体详细复杂的功能设计和软件实现还需要在进一步的研究工作中完成。

参考文献

[1]吴金朋.一种大数据存储模型的研究与应用[D].北京:北京邮电大学计算机学院,2012.

[2]吴广君,王树鹏,陈明,等.海量结构化数据存储检索系统[J].计算机研究与发展,2012,49(Suppl):1~5.

[3]黄

,易晓东,李姗姗,等.面向高性能计算机的海量数据处理平台实现与评测[J].计算机研究与发展,2012,49(Suppl):357~361.

目前哪些NoSQL数据库应用广泛,各有什么特点

特点:

它们可以处理超大量的数据。

它们运行在便宜的PC服务器集群上。

PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。

它们击碎了性能瓶颈。

NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。

“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。

没有过多的操作。

虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。

Bootstrap支持

因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。

优点:

易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

主要应用:

Apache HBase

这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。

Apache Storm

用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。

Apache Spark

该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。

Apache Hadoop

该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。

Apache Drill

你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。

Apache Sqoop

也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。

Apache Giraph

这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。

Cloudera Impala

Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。

Gephi

它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。

MongoDB

这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。

十大顶尖公司:

Amazon Web Services

Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。

Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。

Cloudera

Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。

Hortonworks

和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。

IBM

当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”

Intel

和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。

MapR Technologies

MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。

Microsoft

微软在开源软件问题上一直很低调,但在大数据形势下,它不得不考虑让Windows也兼容Hadoop,它还积极投入到开源项目中,以更广泛地推动Hadoop生态圈的发展。我们可以在微软的公共云Windows Azure HDInsight产品中看到其成果。微软的Hadoop服务基于Hortonworks的发行版,而且是为Azure量身定制的。

微软也有一些其他的项目,包括名为Polybase的项目,让Hadoop查询实现了SQLServer查询的一些功能。Forrester说:“微软在数据库、数据仓库、云、OLAP、BI、电子表格(包括PowerPivot)、协作和开发工具市场上有很大优势,而且微软拥有庞大的用户群,但要在Hadoop这个领域成为行业领导者还有很远的路要走。”

Pivotal Software

EMC和Vmware部分大数据业务分拆组合产生了Pivotal。Pivotal一直努力构建一个性能优越的Hadoop发行版,为此,Pivotal在开源Hadoop的基础上又添加了一些新的工具,包括一个名为HAWQ的SQL引擎以及一个专门解决大数据问题的Hadoop应用。Forrester称Pivotal Hadoop平台的优势在于它整合了Pivotal、EMC、Vmware的众多技术,Pivotal的真正优势实际上等于EMC和Vmware两大公司为其撑腰。到目前为止,Pivotal的用户还不到100个,而且大多是中小型客户。

Teradata

对于Teradata来说,Hadoop既是一种威胁也是一种机遇。数据管理,特别是关于SQL和关系数据库这一领域是Teradata的专长。所以像Hadoop这样的NoSQL平台崛起可能会威胁到Teradata。相反,Teradata接受了Hadoop,通过与Hortonworks合作,Teradata在Hadoop平台集成了SQL技术,这使Teradata的客户可以在Hadoop平台上方便地使用存储在Teradata数据仓库中的数据。

AMPLab

通过将数据转变为信息,我们才可以理解世界,而这也正是AMPLab所做的。AMPLab致力于机器学习、数据挖掘、数据库、信息检索、自然语言处理和语音识别等多个领域,努力改进对信息包括不透明数据集内信息的甄别技术。除了Spark,开源分布式SQL查询引擎Shark也源于AMPLab,Shark具有极高的查询效率,具有良好的兼容性和可扩展性。近几年的发展使计算机科学进入到全新的时代,而AMPLab为我们设想一个运用大数据、云计算、通信等各种资源和技术灵活解决难题的方案,以应对越来越复杂的各种难题。


当前标题:nosql检索,Nosql
本文链接:http://kswsj.cn/article/dsdgcsi.html

其他资讯