nosql数据合并,mysql数据库合并-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

nosql数据合并,mysql数据库合并

大数据方面核心技术有哪些?

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。

我们注重客户提出的每个要求,我们充分考虑每一个细节,我们积极的做好网站建设、成都网站制作服务,我们努力开拓更好的视野,通过不懈的努力,成都创新互联公司赢得了业内的良好声誉,这一切,也不断的激励着我们更好的服务客户。 主要业务:网站建设,网站制作,网站设计,成都小程序开发,网站开发,技术开发实力,DIV+CSS,PHP及ASP,ASP.Net,SQL数据库的技术开发工程师。

1、数据采集与预处理:FlumeNG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。

2、数据存储:Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。

3、数据清洗:MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算。

4、数据查询分析:Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供HQL(HiveSQL)查询功能。Spark启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

大数据技术有哪些?

随着大数据分析市场迅速扩展,哪些技术是最有需求和最有增长潜力的呢?在Forrester Research的一份最新研究报告中,评估了22种技术在整个数据生命周期中的成熟度和轨迹。这些技术都对大数据的实时、预测和综合洞察有着巨大的贡献。

1. 预测分析技术

这也是大数据的主要功能之一。预测分析允许公司通过分析大数据源来发现、评估、优化和部署预测模型,从而提高业务性能或降低风险。同时,大数据的预测分析也与我们的生活息息相关。淘宝会预测你每次购物可能还想买什么,爱奇艺正在预测你可能想看什么,百合网和其他约会网站甚至试图预测你会爱上谁……

2. NoSQL数据库

NoSQL,Not Only SQL,意思是“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库提供了比关系数据库更灵活、可伸缩和更便宜的替代方案,打破了传统数据库市场一统江山的格局。并且,NoSQL数据库能够更好地处理大数据应用的需求。常见的NoSQL数据库有HBase、Redis、MongoDB、Couchbase、LevelDB等。

3. 搜索和知识发现

支持来自于多种数据源(如文件系统、数据库、流、api和其他平台和应用程序)中的大型非结构化和结构化数据存储库中自助提取信息的工具和技术。如,数据挖掘技术和各种大数据平台。

4. 大数据流计算引擎

能够过滤、聚合、丰富和分析来自多个完全不同的活动数据源的数据的高吞吐量的框架,可以采用任何数据格式。现今流行的流式计算引擎有Spark Streaming和Flink。

5. 内存数据结构

通过在分布式计算机系统中动态随机访问内存(DRAM)、闪存或SSD上分布数据,提供低延迟的访问和处理大量数据。

6. 分布式文件存储

为了保证文件的可靠性和存取性能,数据通常以副本的方式存储在多个节点上的计算机网络。常见的分布式文件系统有GFS、HDFS、Lustre 、Ceph等。

7. 数据虚拟化

数据虚拟化是一种数据管理方法,它允许应用程序检索和操作数据,而不需要关心有关数据的技术细节,比如数据在源文件中是何种格式,或者数据存储的物理位置,并且可以提供单个客户用户视图。

8. 数据集成

用于跨解决方案进行数据编排的工具,如Amazon Elastic MapReduce (EMR)、Apache Hive、Apache Pig、Apache Spark、MapReduce、Couchbase、Hadoop和MongoDB等。

9. 数据准备

减轻采购、成形、清理和共享各种杂乱数据集的负担的软件,以加速数据对分析的有用性。

10. 数据质量

使用分布式数据存储和数据库上的并行操作,对大型高速数据集进行数据清理和充实的产品。

中国大数据六大技术变迁记

中国大数据六大技术变迁记_数据分析师考试

 集“Hadoop中国云计算大会”与“CSDN大数据技术大会”精华之大成, 历届的中国大数据技术大会(BDTC) 已发展成为国内事实上的行业顶尖技术盛会。从2008年的60人Hadoop沙龙到当下的数千人技术盛宴,作为业内极具实战价值的专业交流平台,每一届的中国大数据技术大会都忠实地描绘了大数据领域内的技术热点,沉淀了行业实战经验,见证了整个大数据生态圈技术的发展与演变。

2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会协办,中科院计算所与CSDN共同承办的 2014中国大数据技术大会(Big Data Technology Conference 2014,BDTC 2014) 将在北京新云南皇冠假日酒店拉开帷幕。大会为期三天,以推进行业应用中的大数据技术发展为主旨,拟设立“大数据基础设施”、“大数据生态系统”、“大数据技术”、“大数据应用”、“大数据互联网金融技术”、“智能信息处理”等多场主题论坛与行业峰会。由中国计算机学会主办,CCF大数据专家委员会承办,南京大学与复旦大学协办的“2014年第二届CCF大数据学术会议”也将同时召开,并与技术大会共享主题报告。

本次大会将邀请近100位国外大数据技术领域顶尖专家与一线实践者,深入讨论Hadoop、YARN、Spark、Tez、 HBase、Kafka、OceanBase等开源软件的最新进展,NoSQL/NewSQL、内存计算、流计算和图计算技术的发展趋势,OpenStack生态系统对于大数据计算需求的思考,以及大数据下的可视化、机器学习/深度学习、商业智能、数据分析等的最新业界应用,分享实际生产系统中的技术特色和实践经验。

大会召开前期,特别梳理了历届大会亮点以记录中国大数据技术领域发展历程,并立足当下生态圈现状对即将召开的BDTC 2014进行展望:

追本溯源,悉大数据六大技术变迁

伴随着大数据技术大会的发展,我们亲历了中国大数据技术与应用时代的到来,也见证了整个大数据生态圈技术的发展与衍变:

1. 计算资源的分布化——从网格计算到云计算。 回顾历届BDTC大会,我们不难发现,自2009年,资源的组织和调度方式已逐渐从跨域分布的网格计算向本地分布的云计算转变。而时至今日,云计算已成为大数据资源保障的不二平台。

2. 数据存储变更——HDFS、NoSQL应运而生。 随着数据格式越来越多样化,传统关系型存储已然无法满足新时代的应用程序需求,HDFS、NoSQL等新技术应运而生,并成为当下许多大型应用架构不可或缺的一环,也带动了定制计算机/服务器的发展,同时也成为大数据生态圈中最热门的技术之一。

3. 计算模式改变——Hadoop计算框成主流。 为了更好和更廉价地支撑其搜索服务,Google创建了Map/Reduce和GFS。而在Google论文的启发下,原雅虎工程师Doug Cutting开创了与高性能计算模式迥异的,计算向数据靠拢的Hadoop软件生态系统。Hadoop天生高贵,时至今日已成为Apache基金会最“Hot”的开源项目,更被公认为大数据处理的事实标准。Hadoop以低廉的成本在分布式环境下提供了海量数据的处理能力。因此,Hadoop技术研讨与实践分享也一直是历届中国大数据技术大会最亮眼的特色之一。

4. 流计算技术引入——满足应用的低延迟数据处理需求。 随着业务需求扩展,大数据逐渐走出离线批处理的范畴,Storm、Kafka等将实时性、扩展性、容错性和灵活性发挥得淋漓尽致的流处理框架,使得旧有消息中间件技术得以重生。成为历届BDTC上一道亮丽的风景线。

5. 内存计算初露端倪——新贵Spark敢与老将叫板。 Spark发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,从多迭代批量处理出发,兼容并蓄数据仓库、流处理和图计算等多种计算范式,是罕见的全能选手。在短短4年,Spark已发展为Apache软件基金会的顶级项目,拥有30个Committers,其用户更包括IBM、Amazon、Yahoo!、Sohu、百度、阿里、腾讯等多家知名公司,还包括了Spark SQL、Spark Streaming、MLlib、GraphX等多个相关项目。毫无疑问,Spark已站稳脚跟。

6. 关系数据库技术进化—NewSQL改写数据库历史。 关系数据库系统的研发并没有停下脚步,在横向扩展、高可用和高性能方面也在不断进步。实际应用对面向联机分析处理(OLAP)的MPP(Massively Parallel Processing)数据库的需求最迫切,包括MPP数据库学习和采用大数据领域的新技术,如多副本技术、列存储技术等。而面向联机事务处理(OLTP)的数据库则向着高性能演进,其目标是高吞吐率、低延迟,技术发展趋势包括全内存化、无锁化等。

立足扬帆,看2014大数据生态圈发展

时光荏苒,转眼间第2014中国大数据技术大会将如期举行。在技术日新月异的当下,2014年的BDTC上又可以洞察些什么?这里我们不妨着眼当下技术发展趋势:

1. MapReduce已成颓势,YARN/Tez是否可以再创辉煌? 对于Hadoop来说,2014是欢欣鼓舞的一年——EMC、Microsoft、Intel、Teradata、Cisco等众多巨头都加大了Hadoop方面的投入。然而对于众多机构来说,这一年却并不轻松:基于MapReduce的实时性短板以及机构对更通用大数据处理平台的需求,Hadoop 2.0转型已势在必行。那么,在转型中,机构究竟会遭遇什么样的挑战?各个机构如何才能更好地利用YARN所带来的新特性?Hadoop未来的发展又会有什么重大变化?为此,BDTC 2014特邀请了Apache Hadoop committer,Apache Hadoop Project Management Committee(PMC)成员Uma Maheswara Rao G,Apache Hadoop committer Yi Liu,Bikas Saha(PMC member of the Apache Hadoop and Tez)等国际顶尖Hadoop专家,我们不妨当面探讨。

2. 时过境迁,Storm、Kafka等流计算框架前途未卜。 如果说MapReduce的缓慢给众多流计算框架带来了可乘之机,那么当Hadoop生态圈组件越发成熟,Spark更加易用,迎接这些流计算框架的又是什么?这里我们不妨根据BDTC 2014近百场的实践分享进行一个侧面的了解,亦或是与专家们当面交流。

3. Spark,是颠覆还是补充? 与Hadoop生态圈的兼容,让Spark的发展日新月异。然而根据近日Sort Benchmark公布的排序结果,在海量(100TB)离线数据排序上,对比上届冠军Hadoop,Spark以不到十分之一的机器,只使用三分之一的时间就完成了同样数据量的排序。毫无疑问,当下Spark已不止步于实时计算,目标直指通用大数据处理平台,而终止Shark,开启Spark SQL或许已经初见端倪。那么,当Spark愈加成熟,更加原生的支持离线计算后,开源大数据标准处理平台这个荣誉又将花落谁家?这里我们一起期待。

4. 基础设施层,用什么来提升我们的网络? 时至今日,网络已成为众多大数据处理平台的攻坚对象。比如,为了克服网络瓶颈,Spark使用新的基于Netty的网络模块取代了原有的NIO网络模块,从而提高了对网络带宽的利用。那么,在基础设施层我们又该如何克服网络这个瓶颈?直接使用更高效的网络设备,比如Infiniband能够带来多少性能提升?建立一个更智能网络,通过计算的每个阶段,自适应来调整拆分/合并阶段中的数据传输要求,不仅提高了速度,也提高了利用率。在BDTC 2014上,我们可以从Infiniband/RDMA技术及应用演讲,以及数场SDN实战上吸取宝贵的经验。

5. 数据挖掘的灵魂——机器学习。 近年来,机器学习领域的人才抢夺已进入白热化,类似Google、IBM、微软、百度、阿里、腾讯对机器学习领域的投入也是愈来愈高,囊括了芯片设计、系统结构(异构计算)、软件系统、模型算法和深度应用各个方面。大数据标志一个新时代的到来,PB数据让人们坐拥金山,然而缺少了智能算法,机器学习这个灵魂,价值的提取无疑变得镜花水月。而在本届会议上,我们同样为大家准备了数场机器学习相关分享,静候诸位参与。

而在技术分享之外,2014年第二届CCF大数据学术会议也将同时召开,并与技术大会共享主题报告。届时,我们同样可以斩获许多来自学术领域的最新科研成果。

以上是小编为大家分享的关于中国大数据六大技术变迁记的相关内容,更多信息可以关注环球青藤分享更多干货


当前标题:nosql数据合并,mysql数据库合并
当前链接:http://kswsj.cn/article/dsdgpcc.html

其他资讯