nosql数据库发展,nosql数据库技术-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

nosql数据库发展,nosql数据库技术

什么是nosql非结构化数据库

基本含义NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。NoSQLNoSQL数据库的四大分类键值(Key-Value)存储数据库这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。[3] 举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.列存储数据库。这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak.文档型数据库文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。图形(Graph)数据库图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。[2] 如:Neo4J, InfoGrid, Infinite Graph.因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。

为凤冈等地区用户提供了全套网页设计制作服务,及凤冈网站建设行业解决方案。主营业务为成都网站制作、网站设计、外贸网站建设、凤冈网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

NoSQL会取代完全取代关系型数据库吗?

对此,前Google工程师,Milo(本地商店搜索引擎)创始人Ted Dziuba最近发表标题惊人的博客“I Can't Wait for NoSQL to Die”,对NoSQL的适用范围进行了分析。他认为, NoSQL也会带来一连串的新问题,并不会成为主流,无法取代关系型数据库。 他的理由是:Cassandra等NoSQL数据库在使用上并不方便,比如,修改column family定义时就需要重启。而且NoSQL更适合Google那样的规模,而一般的互联网公司都不是Google,早早地去考虑Google那样的规模的可扩展性,纯粹是浪费时间,存在巨大的商业风险。 他还透露,即使在Google,AdWords这样的关键产品也是基于MySQL实现的。 他在文中最后表示,NoSQL当然死不了,但是 它最终会被边缘化,就像Rails被NoSQL边缘化一样 Dziuba的文章因为言辞激烈,在社区里引起了强烈反应。 SQL数据库阵营赞同者大有人在。craigslist工程师、著名的MySQL专家Jeremy Zawodny表示,在读此文的时候,不时会心一笑。他说, NoSQL运动只是软件不断进化进程中的正常现象 。关系型数据库也会继续发展,MySQL社区不断推出的XtraDB或InnoDB插件, PBXT, Drizzle都是证据。各种技术竞争的结果是,我们获得了更多解决问题的选择。 drizzle项目开发者Eric Day也表示,NoSQL有很多值得学习的,但是目前大部分实际项目的最佳选择还是关系型数据库。 NoSQL阵营当然不会坐视不理,Cassandra项目组的Eric Evans表示,Dziuba提到Cassandra修改column family定义的问题其实很容易解决。而且,NoSQL并不是要取代MySQL,事实上Twitter仍然在用MySQL。如果关系型数据库能够承担负荷,那就用好了;如果不行,请考虑NoSQL。 而德国知名博客Code Monkeyism则嘲笑Dziuba看起来并没有用MySQL做过真实项目,因为MySQL如果没有memcache,基本上无法应付网站项目。他认为,NoSQL将使SQL数据库边缘化,而且一个重要理由恰恰是可以节省DBA的开销。 digg的前任首席架构师现在也在创业的Joe Stump说,自己现在的创业项目就是用NoSQL,而且列举了一系列问题挑战SQL阵营。

为什么海量数据场景中NoSQL越来越重要

本质是因为:随着互联网的进一步发展与各行业信息化建设进程加快、参与者的增多,人们对软件有了更多更新的要求,需要软件不仅能实现功能,而且要求保证许多人可以共同参与使用,因而软件所需承载的数据量和吞吐量必须达到相应的需求。而目前的关系型数据库在某些方面有一些缺点,导致不能满足需要。

具体则需要对比关系型数据库与Nosql之间的区别可以得出

关系型数据库

关系型数据库把所有的数据都通过行和列的二元表现形式表示出来。

关系型数据库的优势:

1. 保持数据的一致性(事务处理)

2.由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处)

3. 可以进行Join等复杂查询

其中能够保持数据的一致性是关系型数据库的最大优势。

关系型数据库的不足:

不擅长的处理

1. 大量数据的写入处理(这点尤为重要)

2. 为有数据更新的表做索引或表结构(schema)变更

3. 字段不固定时应用

4. 对简单查询需要快速返回结果的处理

--大量数据的写入处理

读写集中在一个数据库上让数据库不堪重负,大部分网站已使用主从复制技术实现读写分离,以提高读写性能和读库的可扩展性。

所以在进行大量数据操作时,会使用数据库主从模式。数据的写入由主数据库负责,数据的读入由从数据库负责,可以比较简单地通过增加从数据库来实现规模化,但是数据的写入却完全没有简单的方法来解决规模化问题。

第一,要想将数据的写入规模化,可以考虑把主数据库从一台增加到两台,作为互相关联复制的二元主数据库使用,确实这样可以把每台主数据库的负荷减少一半,但是更新处理会发生冲突,可能会造成数据的不一致,为了避免这样的问题,需要把对每个表的请求分别分配给合适的主数据库来处理。

第二,可以考虑把数据库分割开来,分别放在不同的数据库服务器上,比如将不同的表放在不同的数据库服务器上,数据库分割可以减少每台数据库服务器上的数据量,以便减少硬盘IO的输入、输出处理,实现内存上的高速处理。但是由于分别存储字不同服务器上的表之间无法进行Join处理,数据库分割的时候就需要预先考虑这些问题,数据库分割之后,如果一定要进行Join处理,就必须要在程序中进行关联,这是非常困难的。

--为有数据更新的表做索引或表结构变更

在使用关系型数据库时,为了加快查询速度需要创建索引,为了增加必要的字段就一定要改变表结构,为了进行这些处理,需要对表进行共享锁定,这期间数据变更、更新、插入、删除等都是无法进行的。如果需要进行一些耗时操作,例如为数据量比较大的表创建索引或是变更其表结构,就需要特别注意,长时间内数据可能无法进行更新。

--字段不固定时的应用

如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。

--对简单查询需要快速返回结果的处理  (这里的“简单”指的是没有复杂的查询条件)

这一点称不上是缺点,但不管怎样,关系型数据库并不擅长对简单的查询快速返回结果,因为关系型数据库是使用专门的sql语言进行数据读取的,它需要对sql与越南进行解析,同时还有对表的锁定和解锁等这样的额外开销,这里并不是说关系型数据库的速度太慢,而只是想告诉大家若希望对简单查询进行高速处理,则没有必要非使用关系型数据库不可。

NoSQL数据库

关系型数据库应用广泛,能进行事务处理和表连接等复杂查询。相对地,NoSQL数据库只应用在特定领域,基本上不进行复杂的处理,但它恰恰弥补了之前所列举的关系型数据库的不足之处。

优点:

易于数据的分散

各个数据之间存在关联是关系型数据库得名的主要原因,为了进行join处理,关系型数据库不得不把数据存储在同一个服务器内,这不利于数据的分散,这也是关系型数据库并不擅长大数据量的写入处理的原因。相反NoSQL数据库原本就不支持Join处理,各个数据都是独立设计的,很容易把数据分散在多个服务器上,故减少了每个服务器上的数据量,即使要处理大量数据的写入,也变得更加容易,数据的读入操作当然也同样容易。

典型的NoSQL数据库

临时性键值存储(memcached、Redis)、永久性键值存储(ROMA、Redis)、面向文档的数据库(MongoDB、CouchDB)、面向列的数据库(Cassandra、HBase)

一、 键值存储

它的数据是以键值的形式存储的,虽然它的速度非常快,但基本上只能通过键的完全一致查询获取数据,根据数据的保存方式可以分为临时性、永久性和两者兼具 三种。

(1)临时性

所谓临时性就是数据有可能丢失,memcached把所有数据都保存在内存中,这样保存和读取的速度非常快,但是当memcached停止时,数据就不存在了。由于数据保存在内存中,所以无法操作超出内存容量的数据,旧数据会丢失。总结来说:

。在内存中保存数据

。可以进行非常快速的保存和读取处理

。数据有可能丢失

(2)永久性

所谓永久性就是数据不会丢失,这里的键值存储是把数据保存在硬盘上,与临时性比起来,由于必然要发生对硬盘的IO操作,所以性能上还是有差距的,但数据不会丢失是它最大的优势。总结来说:

。在硬盘上保存数据

。可以进行非常快速的保存和读取处理(但无法与memcached相比)

。数据不会丢失

(3) 两者兼备

Redis属于这种类型。Redis有些特殊,临时性和永久性兼具。Redis首先把数据保存在内存中,在满足特定条件(默认是 15分钟一次以上,5分钟内10个以上,1分钟内10000个以上的键发生变更)的时候将数据写入到硬盘中,这样既确保了内存中数据的处理速度,又可以通过写入硬盘来保证数据的永久性,这种类型的数据库特别适合处理数组类型的数据。总结来说:

。同时在内存和硬盘上保存数据

。可以进行非常快速的保存和读取处理

。保存在硬盘上的数据不会消失(可以恢复)

。适合于处理数组类型的数据

二、面向文档的数据库

MongoDB、CouchDB属于这种类型,它们属于NoSQL数据库,但与键值存储相异。

(1)不定义表结构

即使不定义表结构,也可以像定义了表结构一样使用,还省去了变更表结构的麻烦。

(2)可以使用复杂的查询条件

跟键值存储不同的是,面向文档的数据库可以通过复杂的查询条件来获取数据,虽然不具备事务处理和Join这些关系型数据库所具有的处理能力,但初次以外的其他处理基本上都能实现。

三、 面向列的数据库

Cassandra、HBae、HyperTable属于这种类型,由于近年来数据量出现爆发性增长,这种类型的NoSQL数据库尤其引入注目。

普通的关系型数据库都是以行为单位来存储数据的,擅长以行为单位的读入处理,比如特定条件数据的获取。因此,关系型数据库也被成为面向行的数据库。相反,面向列的数据库是以列为单位来存储数据的,擅长以列为单位读入数据。

面向列的数据库具有搞扩展性,即使数据增加也不会降低相应的处理速度(特别是写入速度),所以它主要应用于需要处理大量数据的情况。另外,把它作为批处理程序的存储器来对大量数据进行更新也是非常有用的。但由于面向列的数据库跟现行数据库存储的思维方式有很大不同,故应用起来十分困难。

总结:关系型数据库与NoSQL数据库并非对立而是互补的关系,即通常情况下使用关系型数据库,在适合使用NoSQL的时候使用NoSQL数据库,让NoSQL数据库对关系型数据库的不足进行弥补。

什么是NoSQL数据库?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,

泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。

(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 关系型数据库与NoSQL的区别?

3.1 RDBMS

高度组织化结构化数据

结构化查询语言(SQL)

数据和关系都存储在单独的表中。

数据操纵语言,数据定义语言

严格的一致性

基础事务

ACID

关系型数据库遵循ACID规则

事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:

A (Atomicity) 原子性

原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。

C (Consistency) 一致性

一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。

I (Isolation) 独立性

所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。

3.2 NoSQL

代表着不仅仅是SQL

没有声明性查询语言

没有预定义的模式

键 - 值对存储,列存储,文档存储,图形数据库

最终一致性,而非ACID属性

非结构化和不可预知的数据

CAP定理

高性能,高可用性和可伸缩性

分布式数据库中的CAP原理(了解)

CAP定理:

Consistency(一致性), 数据一致更新,所有数据变动都是同步的

Availability(可用性), 好的响应性能

Partition tolerance(分区容错性) 可靠性

P: 系统中任意信息的丢失或失败不会影响系统的继续运作。

定理:任何分布式系统只可同时满足二点,没法三者兼顾。

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,

因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:

CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。

CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。

AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。

而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。

所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。

说明:C:强一致性 A:高可用性 P:分布式容忍性

举例:

CA:传统Oracle数据库

AP:大多数网站架构的选择

CP:Redis、Mongodb

注意:分布式架构的时候必须做出取舍。

一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。

因此牺牲C换取P,这是目前分布式数据库产品的方向。

4. 当下NoSQL的经典应用

当下的应用是 SQL 与 NoSQL 一起使用的。

代表项目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。

难点:

数据类型多样性。

数据源多样性和变化重构。

数据源改造而服务平台不需要大面积重构。

NoSQL 数据库:何时使用 NoSQL 与 SQL?

NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。

NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。

“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。

在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。

NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。

一些流行的 NoSQL 数据库包括:

随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。

传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。

有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。

但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。

一般来说,在以下情况下,NoSQL 比 SQL 更可取:

许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。

内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。

例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。

大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。

Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。

物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。

Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。

拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。

例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。


文章名称:nosql数据库发展,nosql数据库技术
新闻来源:http://kswsj.cn/article/dseescj.html

其他资讯