> a <- 2:12
> b <- seq(2,23,2)
> c <- c(1:11)^3
> d <- c(5:8, 30:36)
> df <- data.frame(a,b,c,d)
> df$a[df$a==8] <- NA
> df$b[df$b==8] <- NA
> df$c[df$c==8] <- NA
> df$d[df$d==8] <- NA
> df$d[df$d==32] <- NA
> df
a b c d
1 2 2 1 5
2 3 4 NA 6
3 4 6 27 7
4 5 NA 64 NA
5 6 10 125 30
6 7 12 216 31
7 NA 14 343 NA
8 9 16 512 33
9 10 18 729 34
10 11 20 1000 35
11 12 22 1331 36
// 只根据第四列,也就是d 的 NA,移除相应的行
> bad.d <- is.na(df$d)
> bad.d
[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
> df[!bad.d,]
a b c d
1 2 2 1 5
2 3 4 NA 6
3 4 6 27 7
5 6 10 125 30
6 7 12 216 31
8 9 16 512 33
9 10 18 729 34
10 11 20 1000 35
11 12 22 1331 36
// 根据第二列和第三列的NA 移除相应的行
> df[complete.cases(df[,2:3]),]
a b c d
1 2 2 1 5
3 4 6 27 7
5 6 10 125 30
6 7 12 216 31
7 NA 14 343 NA
8 9 16 512 33
9 10 18 729 34
10 11 20 1000 35
11 12 22 1331 36
// 根据第二列和 第四列的NA,移除相应的行
> df[complete.cases(df[,c(2,4)]),]
a b c d
1 2 2 1 5
2 3 4 NA 6
3 4 6 27 7
5 6 10 125 30
6 7 12 216 31
8 9 16 512 33
9 10 18 729 34
10 11 20 1000 35
11 12 22 1331 36
// 根据所有列的NA,移除相应的行
> df[complete.cases(df),]
a b c d
1 2 2 1 5
3 4 6 27 7
5 6 10 125 30
6 7 12 216 31
8 9 16 512 33
9 10 18 729 34
10 11 20 1000 35
11 12 22 1331 36
>
// 这个效果跟上面的df[complete.cases(df),] 相同
> na.omit(df)
a b c d
1 2 2 1 5
3 4 6 27 7
5 6 10 125 30
6 7 12 216 31
8 9 16 512 33
9 10 18 729 34
10 11 20 1000 35
11 12 22 1331 36
// 计算某一列的平均值, 移除NA值
> mean(df$d, na.rm=TRUE)
成都创新互联公司专注于阳西网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供阳西营销型网站建设,阳西网站制作、阳西网页设计、阳西网站官网定制、微信小程序服务,打造阳西网络公司原创品牌,更为您提供
阳西网站排名全网营销落地服务。
另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
本文题目:R语言移除缺失值NA.RM-创新互联
文章路径:
http://kswsj.cn/article/dsocdd.html