C++中怎么实现一个布隆过滤器-创新互联-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

C++中怎么实现一个布隆过滤器-创新互联

C++中怎么实现一个布隆过滤器,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

成都创新互联是创新、创意、研发型一体的综合型网站建设公司,自成立以来公司不断探索创新,始终坚持为客户提供满意周到的服务,在本地打下了良好的口碑,在过去的10年时间我们累计服务了上千家以及全国政企客户,如湿喷机等企业单位,完善的项目管理流程,严格把控项目进度与质量监控加上过硬的技术实力获得客户的一致表扬。

布隆过滤器

一、历史背景知识

  布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远超过一般的算法,缺点是有一定的误识别率和删除错误。而这个缺点是不可避免的。但是绝对不会出现识别错误的情况出现(即假反例False negatives,如果某个元素确实没有在该集合中,那么Bloom Filter 是不会报告该元素存在集合中的,所以不会漏报)

在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上;在网络爬虫里,一个网址是否被访问过等等。最直接的方法就是将集合中全部的元素存在计算机中,遇到一个新 元素时,将它和集合中的元素直接比较即可。一般来讲,计算机中的集合是用哈希表(hash table)来存储的。它的好处是快速准确,缺点是费存储空间。当集合比较小时,这个问题不显著,但是当集合巨大时,哈希表存储效率低的问题就显现出来 了。

比如说,一个象 Yahoo,Hotmail 和 Gmai 那样的公众电子邮件(email)提供商,总是需要过滤来自发送垃圾邮件的人(spamer)的垃圾邮件。一个办法就是记录下那些发垃圾邮件的 email 地址。由于那些发送者不停地在注册新的地址,全世界少说也有几十亿个发垃圾邮件的地址,将他们都存起来则需要大量的网络服务器。如果用哈希表,每存储一亿 个 email 地址, 就需要 1.6GB 的内存(用哈希表实现的具体办法是将每一个 email 地址对应成一个八字节的信息指纹,然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email 地址需要占用十六个字节。一亿个地址大约要 1.6GB, 即十六亿字节的内存)。因此存贮几十亿个邮件地址可能需要上百 GB 的内存。除非是超级计算机,一般服务器是无法存储的[2]。

二、布隆过滤器原理以及优缺点

如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(哈希表,Hash table)等数据结构都是这种思想。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也会越来越慢。

Bloom Filter 是一种空间效率很高的随机数据结构,Bloom Filter 可以看做是对bit-map的扩展,它的原理是:

当一个元素被加入集合中时,通过K个hash函数将这个元素映射成一个位阵列(Bit array)中的K个点,将它们置成1. 检索时,我们只需要看这些点是不是都是1就能(大约)知道集合中有没有它:

如果这些点中有任何一个0,则被检索元素一定不在;

如果都是1,则被检索元素很可能在。

优点:

它的优点是空间效率和查询时间都远远超过一般的算法,布隆过滤器存储空间和插入\查询时间都是O(K),另外,散列函数相互之间没有关系,方便硬件并行实现,布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

缺点:

1、布隆过滤器的缺点和优点同样明显。误算率是其中之一。随着存入元素的增加,误算率随之增加。但是元素数量太少,则使用散列就可以了。

2、一般情况下不能从布隆过滤器中删除元素,我们很容易想到把位数组变成整数数组,每插入一个元素相应的计数器加1,这样删除元素时将计数器减掉就可以了。然而要保证安全地删除元素并非这么简单。首先我们必须保证删除的元素的确存在布隆过滤器里面,另外计数器回绕也会造成问题。

三、example

Google Chrome浏览器使用Bloom filter识别恶意链接(能用较小的存储空间表示较大的数据集合,简单想就是把 每一个URL都可以映射成bit)的多,并且误判率在万分之一以下。

C++实现

bit_set.h

#pragma once 
#include 
using namespace std; 
#include 
 
class Bitset 
{ 
public: 
  Bitset(size_t value) 
  { 
    _a.resize((value >> 5) + 1, 0); 
  } 
  bool set(size_t num) 
  { 
    size_t index = num>>5; 
    size_t pos = num % 32; 
    if (_a[index] & (1 << (31 - pos))) 
    { 
      return false; 
    } 
    else 
    { 
      _a[index] |= (1 << (31 - pos)); 
      _size++; 
      return true; 
    } 
     
  } 
  bool Reset(size_t num) 
  { 
    size_t index = num >> 5; 
    size_t pos = num % 32; 
    if (Text(num)) 
    { 
      _a[index] &= ~(1 << (31 - pos)); 
      _size--; 
      return true; 
    } 
    else 
    { 
      return false; 
    } 
  } 
  bool Text(size_t num) 
  { 
    size_t index = num >> 5; 
    size_t pos = num % 32; 
    return _a[index] & (1 << (31-pos)); 
  } 
private: 
  vector _a; 
  size_t _size; 
};

Hash.h

#pragma once 
template //各类哈希字符串转换函数  
size_t BKDRHash(const char *str) 
{ 
  register size_t hash = 0; 
  while (size_t ch = (size_t)*str++) 
  { 
    hash = hash * 131 + ch; 
  } 
  return hash; 
} 
 
template 
size_t SDBMHash(const char *str) 
{ 
  register size_t hash = 0; 
  while (size_t ch = (size_t)*str++) 
  { 
    hash = 65599 * hash + ch; 
  } 
  return hash; 
} 
 
template 
size_t RSHash(const char * str) 
{ 
  size_t hash = 0; 
  size_t magic = 63689; 
  while (size_t ch = (size_t)*str++) 
  { 
    hash = hash * magic + ch; 
    magic *= 378551; 
  } 
  return hash; 
} 
 
 
template 
size_t APHash(const char *str) 
{ 
  register size_t hash = 0; 
  size_t ch; 
  for (long i = 0; ch = (size_t)*str++; i++) 
  { 
    if ((i & 1) == 0) 
    { 
      hash ^= ((hash << 7) ^ ch ^ (hash >> 3)); 
    } 
    else 
    { 
      hash ^= (~((hash << 11) ^ ch ^ (hash >> 5))); 
    } 
  } 
  return hash; 
} 
 
 
template 
size_t JSHash(const char* str) 
{ 
  if (!*str) 
  { 
    return 0; 
  } 
  size_t hash = 1315423911; 
  while (size_t ch = (size_t)*str++) 
  { 
    hash ^= ((hash << 5) + ch + (hash >> 2)); 
  } 
  return hash; 
}

Bloom_Filter.h

#pragma once 
 
#include"bite_set.h" 
#include"Hash.h" 
#include 
 
template 
struct __HashFunk1 
{ 
  size_t operator()(const T& key) 
  { 
    return BKDRHash(key.c_str()); 
  } 
}; 
 
template 
struct __HashFunk2 
{ 
  size_t operator()(const T& key) 
  { 
    return SDBMHash(key.c_str()); 
  } 
};  
 
template 
struct __HashFunk3 
{ 
  size_t operator()(const T& key) 
  { 
    return RSHash(key.c_str()); 
  } 
}; 
 
template 
struct __HashFunk4 
{ 
  size_t operator()(const T& key) 
  { 
    return APHash(key.c_str()); 
  } 
}; 
 
template 
struct __HashFunk5 
{ 
  size_t operator()(const T& key) 
  { 
    return JSHash(key.c_str()); 
  } 
}; 
 
 
template, 
class HashFunk2 = __HashFunk2, 
class HashFunk3 = __HashFunk3, 
class HashFunk4 = __HashFunk4, 
class HashFunk5 = __HashFunk5> 
 
class BoolFilter 
{ 
public: 
  BoolFilter(size_t n) 
    :_a(n * 10) 
    , _range(n * 10) 
  {} 
 
  void set(const K& key) 
  { 
    _a.set(HashFunk1()(key) % _range); 
    _a.set(HashFunk2()(key) % _range); 
    _a.set(HashFunk3()(key) % _range); 
    _a.set(HashFunk4()(key) % _range); 
    _a.set(HashFunk5()(key) % _range); 
  } 
 
  bool Text(const K& key) 
  { 
    if (!_a.Text(HashFunk1()(key)% _range)) 
      return false; 
    if (!_a.Text(HashFunk2()(key) % _range)) 
      return false; 
    if (!_a.Text(HashFunk3()(key) % _range)) 
      return false; 
    if (!_a.Text(HashFunk4()(key) % _range)) 
      return false; 
    if (!_a.Text(HashFunk5()(key) % _range)) 
      return false; 
    return true; 
  } 
private: 
  Bitset _a; 
  size_t _range; 
};

看完上述内容,你们掌握C++中怎么实现一个布隆过滤器的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联网站建设公司行业资讯频道,感谢各位的阅读!

另外有需要云服务器可以了解下创新互联建站www.cdcxhl.com,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站题目:C++中怎么实现一个布隆过滤器-创新互联
本文链接:http://kswsj.cn/article/eghoi.html

其他资讯