Hadoop上DataLocality的详解-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

Hadoop上DataLocality的详解

Hadoop上Data Locality的详解

目前累计服务客户1000多家,积累了丰富的产品开发及服务经验。以网站设计水平和技术实力,树立企业形象,为客户提供成都网站设计、网站制作、网站策划、网页设计、网络营销、VI设计、网站改版、漏洞修补等服务。创新互联建站始终以务实、诚信为根本,不断创新和提高建站品质,通过对领先技术的掌握、对创意设计的研究、对客户形象的视觉传递、对应用系统的结合,为客户提供更好的一站式互联网解决方案,携手广大客户,共同发展进步。

Hadoop上的Data Locality是指数据与Mapper任务运行时数据的距离接近程度(Data Locality in Hadoop refers to the“proximity” of the data with respect to the Mapper tasks working on the data.)

1. why data locality is imporant?

当数据集存储在HDFS中时,它被划分为块并存储在Hadoop集群中的DataNode上。当在数据集执行MapReduce作业时,各个Mappers将处理这些块(输进行入分片处理)。如果Mapper不能从它执行的节点上获取数据,数据需要通过网络从具有这些数据的DataNode拷贝到执行Mapper任务的节点上(the data needs to be copied over the network from the DataNode which has the data to the DataNode which is executing the Mapper task)。假设一个MapReduce作业具有超过1000个Mapper,在同一时间每一个Mapper都试着去从集群上另一个DataNode节点上拷贝数据,这将导致严重的网络阻塞,因为所有的Mapper都尝试在同一时间拷贝数据(这不是一种理想的方法)。因此,将计算任务移动到更接近数据的节点上是一种更有效与廉价的方法,相比于将数据移动到更接近计算任务的节点上(it is always effective and cheap to move the computation closer to the data than to move the data closer to the computation)。

2. How is data proximity defined?

当JobTracker(MRv1)或ApplicationMaster(MRv2)接收到运行作业的请求时,它查看集群中的哪些节点有足够的资源来执行该作业的Mappers和Reducers。同时需要根据Mapper运行数据所处位置来考虑决定每个Mapper执行的节点(serious consideration is made to decide on which nodes the individual Mappers will be executed based on where the data for the Mapper is located)。

Hadoop上Data Locality的详解

3. Data Local

当数据所处的节点与Mapper执行的节点是同一节点,我们称之为Data Local。在这种情况下,数据的接近度更接近计算( In this case the proximity of the data is closer to the computation.)。JobTracker(MRv1)或ApplicationMaster(MRv2)首选具有Mapper所需要数据的节点来执行Mapper。

4. Rack Local

虽然Data Local是理想的选择,但由于受限于集群上的资源,并不总是在与数据同一节点上执行Mapper(Although Data Local is the ideal choice, it is not always possible to execute the Mapper on the same node as the data due to resource constraints on a busy cluster)。在这种情况下,优选地选择在那些与数据节点在同一机架上的不同节点上运行Mapper( In such instances it is preferred to run the Mapper on a different node but on the same rack as the node which has the data.)。在这种情况下,数据将在节点之间进行移动,从具有数据的节点移动到在同一机架上执行Mapper的节点,这种情况我们称之为Rack Local。

5. Different Rack

在繁忙的群集中,有时Rack Local也不可能。在这种情况下,选择不同机架上的节点来执行Mapper,并且将数据从具有数据的节点复制到在不同机架上执行Mapper的节点。这是最不可取的情况。

如有疑问请留言或者到本站社区交流讨论,感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!


网页名称:Hadoop上DataLocality的详解
链接URL:http://kswsj.cn/article/gdgipg.html

其他资讯