hive大数据倾斜的原因有哪些-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

hive大数据倾斜的原因有哪些

这篇文章主要为大家展示了“hive大数据倾斜的原因有哪些”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“hive大数据倾斜的原因有哪些”这篇文章吧。

成都创新互联公司主要从事成都网站制作、成都网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务惠农,十年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220

1数据倾斜的原因

1.1操作:

关键词

情形

后果

Join

其中一个表较小,

但是key集中

分发到某一个或几个Reduce上的数据远高于平均值

大表与大表,但是分桶的判断字段0值或空值过多

这些空值都由一个reduce处理,灰常慢


group by

group by 维度过小,

某值的数量过多

处理某值的reduce灰常耗时

Count Distinct

某特殊值过多

处理此特殊值的reduce耗时

1.2原因:

1)、key分布不均匀

2)、业务数据本身的特性

3)、建表时考虑不周

4)、某些SQL语句本身就有数据倾斜

1.3表现:

任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。

单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。

2数据倾斜的解决方案

2.1参数调节:

hive.map.aggr=true

Map 端部分聚合,相当于Combiner

hive.groupby.skewindata=true

有数据倾斜的时候进行负载均衡,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

2.2 SQL语句调节:

如何Join:

关于驱动表的选取,选用join key分布最均匀的表作为驱动表

做好列裁剪和filter操作,以达到两表做join的时候,数据量相对变小的效果。

大小表Join:

使用map join让小的维度表(1000条以下的记录条数) 先进内存。在map端完成reduce.

大表Join大表:

把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null值关联不上,处理后并不影响最终结果。

count distinct大量相同特殊值

count distinct时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计算结果进行union。

group by维度过小:

采用sum() group by的方式来替换count(distinct)完成计算。

特殊情况特殊处理:

在业务逻辑优化效果的不大情况下,有些时候是可以将倾斜的数据单独拿出来处理。最后union回去。

3典型的业务场景

3.1空值产生的数据倾斜

场景:如日志中,常会有信息丢失的问题,比如日志中的 user_id,如果取其中的 user_id 和 用户表中的user_id 关联,会碰到数据倾斜的问题。

解决方法1: user_id为空的不参与关联(红色字体为修改后)

select * from log a  join users b  on a.user_id is not null
  and a.user_id = b.user_idunion allselect * from log a  where a.user_id is null;

解决方法2 :赋与空值分新的key值

select *
  from log a  left outer join users b  on case when a.user_id is null then concat(‘hive’,rand() ) else a.user_id end = b.user_id;

结论:方法2比方法1效率更好,不但io少了,而且作业数也少了。解决方法1中 log读取两次,jobs是2。解决方法2 job数是1 。这个优化适合无效 id (比如 -99 , ’’, null 等) 产生的倾斜问题。把空值的 key 变成一个字符串加上随机数,就能把倾斜的数据分到不同的reduce上 ,解决数据倾斜问题。

3.2不同数据类型关联产生数据倾斜

场景:用户表中user_id字段为int,log表中user_id字段既有string类型也有int类型。当按照user_id进行两个表的Join操作时,默认的Hash操作会按int型的id来进行分配,这样会导致所有string类型id的记录都分配到一个Reducer中。

解决方法:把数字类型转换成字符串类型

select * from users a  left outer join logs b  on a.usr_id = cast(b.user_id as string)

3.3小表不小不大,怎么用 map join 解决倾斜问题

使用 map join 解决小表(记录数少)关联大表的数据倾斜问题,这个方法使用的频率非常高,但如果小表很大,大到map join会出现bug或异常,这时就需要特别的处理。 以下例子:

select * from log a  left outer join users b  on a.user_id = b.user_id;

users 表有 600w+ 的记录,把 users 分发到所有的 map 上也是个不小的开销,而且 map join 不支持这么大的小表。如果用普通的 join,又会碰到数据倾斜的问题。

解决方法:

select /*+mapjoin(x)*/* from log a
  left outer join (
    select  /*+mapjoin(c)*/d.*
      from ( select distinct user_id from log ) c
      join users d
      on c.user_id = d.user_id
    ) x
  on a.user_id = b.user_id;

假如,log里user_id有上百万个,这就又回到原来map join问题。所幸,每日的会员uv不会太多,有交易的会员不会太多,有点击的会员不会太多,有佣金的会员不会太多等等。所以这个方法能解决很多场景下的数据倾斜问题。

以上是“hive大数据倾斜的原因有哪些”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


网页名称:hive大数据倾斜的原因有哪些
URL分享:http://kswsj.cn/article/gipsjp.html

其他资讯