数据结构(六)——循环链表-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

数据结构(六)——循环链表

数据结构(六)——循环链表

一、循序链表简介

1、循环链表的定义

循环链表的任意元素都有一个前驱和一个后继,所有数据元素在关系上构成逻辑上的环。
循环链表是一种特殊的单链表,尾结点的指针指向首结点的地址。
循环链表的逻辑关系图如下:
数据结构(六)——循环链表

创新互联是一家专业提供芙蓉企业网站建设,专注与成都做网站、网站建设、H5响应式网站、小程序制作等业务。10年已为芙蓉众多企业、政府机构等服务。创新互联专业网站设计公司优惠进行中。

2、循环链表的设计实现

循环链表的设计实现要点:
A、通过模板定义CircleList,继承自LinkedList
B、定义连接链表首尾的内部函数
C、实现首元素的插入和删除操作
D、重写清空操作和遍历操作

3、循环链表的实现关键

A、插入位置为0时,头结点和尾结点均指向新结点,新结点作为首结点插入链表。
B、删除位置为0时,头结点和尾结点指向位置为1的结点,删除销毁首结点

二、循环链表的操作

1、尾结点获取

Node* last()
{
     return this->position(this->m_length - 1)->next;
}

2、首尾结点连接

void lastToFirst()
{
     last()->next = this->m_header.next;
}

三、循环链表的实现

 template 
  class CircleList:public LinkedList
  {
  protected:
      typedef typename LinkedList::Node Node;
      //尾结点
      Node* last()
      {
          return this->position(this->m_length - 1)->next;
      }
      //链接最后一个结点和首结点
      void lastToFirst()
      {
          last()->next = this->m_header.next;
      }
      int mod(int index)const
      {
          return (this->m_length == 0)?0:(index % this->m_length);
      }
  public:
      bool insert(int index, const T& value)
      {
          bool ret = true;
          //计算插入结点的位置
          index = index % (this->m_length + 1);
          ret = LinkedList::insert(index, value);
          //如果插入位置为0
          if(ret && (index == 0))
          {
              lastToFirst();//连接首尾结点
          }
          return ret;
      }
      bool insert(const T& value)
      {
          return insert(this->m_length, value);
      }
      bool remove(int index)
      {
          bool ret = true;
          index = mod(index);
          //删除结点为首结点
          if(index == 0)
          {
              //首结点
              Node* toDel = this->m_header.next;
              if(toDel)
              {
                  //将头结点的下一个结点指向首结点的下一个结点
                  this->m_header.next = toDel->next;
                  this->m_length--;//链表长度减1
                  //链表不为空
                  if(this->m_length > 0)
                  {
                      lastToFirst();//连接新的首结点与尾结点
                      if(this->m_current == toDel)
                      {
                          this->m_current = toDel->next;
                      }
                  }
                  else
                  {
                      //链表为空,置空
                      this->m_header.next = NULL;
                      this->m_current = NULL;
                  }
                  //销毁要删除的结点
                  this->destroy(toDel);
              }
              else
              {
                  ret = false;
              }
          }
          else
          {
              //删除的结点不是首结点,按单链表处理
              ret = LinkedList::remove(index);
          }
          return ret;
      }
      bool set(int index, const T& value)
      {
          index = mod(index);
          return LinkedList::set(index, value);
      }
      T get(int index)const
      {
          index = mod(index);
          return LinkedList::get(index);
      }
      bool get(int index, T& value)
      {
          index = mod(index);
          return LinkedList::get(index, value);
      }
      int find(const T& value)
      {
          int ret = -1;
          //首结点
          Node* current = this->m_header.next;
          //遍历链表查找数据元素
          for(int i = 0; i < this->length(); i++)
          {
              if(current->value == value)
              {
                  ret = i;
                  break;
              }
              //移动游标
              current = current->next;
          }
          return ret;
      }
      void clear()
      {
          //删除链表中结点至头结点
          while(this->m_length > 1)
          {
              remove(1);
          }
          //删除首结点
          if(this->m_length == 1)
          {
              Node* toDel = this->m_header.next;
              this->m_header.next = NULL;
              this->m_current = NULL;
              this->m_length = 0;
              this->destroy(toDel);
          }
      }
      bool move(int pos, int step)
      {
          pos = mod(pos);
          return LinkedList::move(pos, step);
      }
      bool end()
      {
          return (this->m_length == 0) || (this->m_current == NULL);
      }
      ~CircleList()
      {
          clear();
      }
  };

四、约瑟夫环(Josephus)

1、约瑟夫环简介

Josephu约瑟夫环问题为:设编号为1,2,… n的n个人围坐一圈,约定编号为k(1<=k<=n)的人从1开始报数,数到m 的那个人出列,它的下一位又从1开始报数,数到m的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。

2、循环链表解决约瑟夫环问题

//约瑟夫环
void jusephus(int n, int k, int m)
{
  //构建循环链表
  CircleList cl;
  for(int i = 1; i <= n; i++)
  {
      cl.insert(i);
  }
  //移动当前结点到位置k-1,设置步长为m-1
  cl.move(k-1, m-1);
  while(cl.length() > 0)
  {
      cl.next();//移动到目标位置
      cout << cl.current() << endl;
      //删除目标位置结点
      cl.remove(cl.find(cl.current()));
  }
}

3、递归方法解决约瑟夫环问题

当编号为1开始时可以使用递归
假设n=10,m=3
1 2 3 4 5 6 7 8 9 10 m=3
第一次有人出列后:1 2 4 5 6 7 8 9 10
出环的序列:4 5 6 7 8 9 10 1 2
转换为:1 2 3 4 5 6 7 8 9
+3: 4 5 6 7 8 9 10 11 12
%10: 4 5 6 7 8 9 10 1 2
设f(n,m,i)为n个人的环,报数为m,第i个人出环的编号,则f(10,3,10)是我们要的结果
当i=1时,  f(n,m,i) = (n-1+m)%n
当i>1时,  f(n,m,i)= ( f(n-1,m,i-1)+m )%n
当编号为0开始时可以使用递归
假设n=10,m=3
0 1 2 3 4 5 6 7 8 9 m=3
第一次有人出列后:0 1 3 4 5 6 7 8 9
3 4 5 6 7 8 9 0 1
1 2 3 4 5 6 7 8 9
+3: 4 5 6 7 8 9 10 11 12
%10: 3 4 5 6 7 8 9 1 2
设f(n,m,i)为n个人的环,报数为m,第i个人出环的编号,则f(10,3,10)是我们要的结果
当i=1时,  f(n,m,i) = (n-1+m)%n
当i>1时,  f(n,m,i)= ( f(n-1,m,i-1)+m )%n

#include 
#include 

int Josephu_recursion(int n, int m, int i)
{
    if(1 == i)
        return (n-1 + m) % n;
    else
        return (Josephu_recursion(n-1, m, i-1) + m) % n;
}

int main(void)
{
    int i;
    for(i = 1; i <= 10; i ++) 
        printf("第%2d次出环:%2d\n", i, Josephu_recursion(10, 3, i));
}

4、数组方法解决约瑟夫环问题

/***********************************************
 * 约瑟夫环问题的数组解决
 * n:约瑟夫环的长度
 * k:起点
 * m:步长
 * *********************************************/
int JosephuArray(int n, int k, int m)
{
    //分配n+1个int空间
    int *a = (int *)malloc((n+1) * sizeof(int));
    int i, j;
    //下标从1开始赋值
    for(i = 1; i <= n; i++)
        a[i] = i;//从a[1]开始
    //依次出环
    for(i = n; i >= 1; i--)
    {
        //计算每次出环的k值
        k = (k + m -1) % i;
        if(k == 0)
            k = i;
        printf("%2d\n", a[k]);//打印出出环的序号
        //将出环的位置后的元素前移
        for(j = k; j < i; j++)
            a[j] = a[j+1];
    }
    free(a);
}

分享名称:数据结构(六)——循环链表
本文地址:http://kswsj.cn/article/gscecd.html

其他资讯