用python怎样画出如题所示的正余弦函数图像? 如此编写代码,使其中两个轴、图例、刻度,大小,LaTex公式等要素与原图一致,需要用到的代码如下,没有缩进:
创新互联公司2013年至今,是专业互联网技术服务公司,拥有项目成都做网站、网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元陇县做网站,已为上家服务,为陇县各地企业和个人服务,联系电话:18982081108
#-*-codeing:utf-8;-*-
from matplotlib import pyplot as plt
import numpy as np
a=np.linspace(0,360,980)
b=np.sin(a/180*np.pi)
c=np.cos(a/180*np.pi)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlim([0, 360])
ax.plot(a,b,label=r"$y=\sin(\theta)$")
ax.plot(a,c,label=r"$y=\cos(\theta)$")
ax.grid(True)
ax.set_ylabel(r"$y$")
ax.set_xlabel(r"$\theta$")
plt.xticks(np.arange(0,360+1,45))
plt.title("Sine Cosine Waves")
plt.legend()
plt.savefig("SinCosWaveDegFont.jpg")
plt.show()
代码运行show的窗口图
代码的截图
代码输出的文件的图
数学相关
abs(a) : 求取绝对值。abs(-1)
max(list) : 求取list最大值。max([1,2,3])
min(list) : 求取list最小值。min([1,2,3])
sum(list) : 求取list元素的和。 sum([1,2,3]) 6
sorted(list) : 排序,返回排序后的list。
len(list) : list长度,len([1,2,3])
divmod(a,b): 获取商和余数。 divmod(5,2) (2,1)
pow(a,b) : 获取乘方数。pow(2,3) 8
round(a,b) : 获取指定位数的小数。a代表浮点数,b代表要保留的位数。round(3.1415926,2) 3.14
range(a[,b]) : 生成一个a到b的数组,左闭右开。range(1,10) [1,2,3,4,5,6,7,8,9]
类型转换
int(str) : 转换为int型。int('1') 1
float(int/str) : 将int型或字符型转换为浮点型。float('1') 1.0
str(int) : 转换为字符型。str(1) '1'
bool(int) : 转换为布尔类型。 str(0) False str(None) False
bytes(str,code) : 接收一个字符串,与所要编码的格式,返回一个字节流类型。bytes('abc', 'utf-8') b'abc' bytes(u'爬虫', 'utf-8') b'xe7x88xacxe8x99xab'
list(iterable) : 转换为list。 list((1,2,3)) [1,2,3]
iter(iterable): 返回一个可迭代的对象。 iter([1,2,3]) list_iterator object at 0x0000000003813B00
dict(iterable) : 转换为dict。 dict([('a', 1), ('b', 2), ('c', 3)]) {'a':1, 'b':2, 'c':3}
enumerate(iterable) : 返回一个枚举对象。
tuple(iterable) : 转换为tuple。 tuple([1,2,3]) (1,2,3)
set(iterable) : 转换为set。 set([1,4,2,4,3,5]) {1,2,3,4,5} set({1:'a',2:'b',3:'c'}) {1,2,3}
hex(int) : 转换为16进制。hex(1024) '0x400'
oct(int) : 转换为8进制。 oct(1024) '0o2000'
bin(int) : 转换为2进制。 bin(1024) '0b10000000000'
chr(int) : 转换数字为相应ASCI码字符。 chr(65) 'A'
ord(str) : 转换ASCI字符为相应的数字。 ord('A') 65
相关操作
eval****() : 执行一个表达式,或字符串作为运算。 eval('1+1') 2
exec() : 执行python语句。 exec('print("Python")') Python
filter(func, iterable) : 通过判断函数fun,筛选符合条件的元素。 filter(lambda x: x3, [1,2,3,4,5,6]) filter object at 0x0000000003813828
map(func, *iterable) : 将func用于每个iterable对象。 map(lambda a,b: a+b, [1,2,3,4], [5,6,7]) [6,8,10]
zip(*iterable) : 将iterable分组合并。返回一个zip对象。 list(zip([1,2,3],[4,5,6])) [(1, 4), (2, 5), (3, 6)]
type():返回一个对象的类型。
id(): 返回一个对象的唯一标识值。
hash(object):返回一个对象的hash值,具有相同值的object具有相同的hash值。 hash('python') 7070808359261009780
help():调用系统内置的帮助系统。
isinstance():判断一个对象是否为该类的一个实例。
issubclass():判断一个类是否为另一个类的子类。
globals() : 返回当前全局变量的字典。
next(iterator[, default]) : 接收一个迭代器,返回迭代器中的数值,如果设置了default,则当迭代器中的元素遍历后,输出default内容。
reversed(sequence) : 生成一个反转序列的迭代器。 reversed('abc') ['c','b','a']
python数据分析常用图大集合:包含折线图、直方图、垂直条形图、水平条形图、饼图、箱线图、热力图、散点图、蜘蛛图、二元变量分布、面积图、六边形图等12种常用可视化数据分析图,后期还会不断的收集整理,请关注更新!
以下默认所有的操作都先导入了numpy、pandas、matplotlib、seaborn
一、折线图
折线图可以用来表示数据随着时间变化的趋势
Matplotlib
plt.plot(x, y)
plt.show()
Seaborn
df = pd.DataFrame({'x': x, 'y': y})
sns.lineplot(x="x", y="y", data=df)
plt.show()
二、直方图
直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,然后在每个小区间内用矩形条(bars)展示该区间的数值
Matplotlib
Seaborn
三、垂直条形图
条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。
Matplotlib
Seaborn
1plt.show()
四、水平条形图
五、饼图
六、箱线图
箱线图由五个数值点组成:最大值 (max)、最小值 (min)、中位数 (median) 和上下四分位数 (Q3, Q1)。
可以帮我们分析出数据的差异性、离散程度和异常值等。
Matplotlib
Seaborn
七、热力图
力图,英文叫 heat map,是一种矩阵表示方法,其中矩阵中的元素值用颜色来代表,不同的颜色代表不同大小的值。通过颜色就能直观地知道某个位置上数值的大小。
通过 seaborn 的 heatmap 函数,我们可以观察到不同年份,不同月份的乘客数量变化情况,其中颜色越浅的代表乘客数量越多
八、散点图
散点图的英文叫做 scatter plot,它将两个变量的值显示在二维坐标中,非常适合展示两个变量之间的关系。
Matplotlib
Seaborn
九、蜘蛛图
蜘蛛图是一种显示一对多关系的方法,使一个变量相对于另一个变量的显著性是清晰可见
十、二元变量分布
二元变量分布可以看两个变量之间的关系
十一、面积图
面积图又称区域图,强调数量随时间而变化的程度,也可用于引起人们对总值趋势的注意。
堆积面积图还可以显示部分与整体的关系。折线图和面积图都可以用来帮助我们对趋势进行分析,当数据集有合计关系或者你想要展示局部与整体关系的时候,使用面积图为更好的选择。
十二、六边形图
六边形图将空间中的点聚合成六边形,然后根据六边形内部的值为这些六边形上色。
原文至:
python系统提供了下面常用的函数:
1. 数学库模块(math)提供了很多数学运算函数;
2.复数模块(cmath)提供了用于复数运算的函数;
3.随机数模块(random)提供了用来生成随机数的函数;
4.时间(time)和日历(calendar)模块提供了能处理日期和时间的函数。
注意:在调用系统函数之前,先要使用import 语句导入 相应的模块
该语句将模块中定义的函数代码复制到自己的程 序中,然后就可以访问模块中的任何函数,其方 法是在函数名前面加上“模块名.”。
希望能帮到你。