TensorFlow显存使用机制的示例分析-创新互联-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

TensorFlow显存使用机制的示例分析-创新互联

这篇文章主要介绍TensorFlow显存使用机制的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

创新互联主营临西网站建设的网络公司,主营网站建设方案,重庆APP开发公司,临西h5小程序开发搭建,临西网站营销推广欢迎临西等地区企业咨询

默认情况下,TensorFlow 会映射进程可见的所有 GPU 的几乎所有 GPU 内存(取决于 CUDA_VISIBLE_DEVICES)。通过减少内存碎片,可以更有效地使用设备上相对宝贵的 GPU 内存资源。

在某些情况下,最理想的是进程只分配可用内存的一个子集,或者仅根据进程需要增加内存使用量。 TensorFlow 在 Session 上提供两个 Config 选项来进行控制。

(1) : 自主申请所用的内存空间

第一个是 allow_growth 选项,它试图根据运行时的需要来分配 GPU 内存:它刚开始分配很少的内存,随着 Session 开始运行并需要更多 GPU 内存,我们会扩展 TensorFlow 进程所需的 GPU 内存区域。请注意,我们不会释放内存,因为这可能导致出现更严重的内存碎片情况。要开启此选项,请通过以下方式在 ConfigProto 中设置选项:

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)

(2) 规定 可用大内存占单个GPU的总内存比例

第二个是 per_process_gpu_memory_fraction 选项,它可以决定每个可见 GPU 应分配到的内存占总内存量的比例。例如,您可以通过以下方式指定 TensorFlow 仅分配每个 GPU 总内存的 40%:

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)

如要真正限制 TensorFlow 进程可使用的 GPU 内存量,这非常实用。

以上是“TensorFlow显存使用机制的示例分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联成都网站设计公司行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站标题:TensorFlow显存使用机制的示例分析-创新互联
网页地址:http://kswsj.cn/article/hddih.html

其他资讯