python极限函数,函数极限笔记-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

python极限函数,函数极限笔记

用python写一个函数,可以判断两个数组是否环型相等。跪拜大佬帮忙解答一下?

import numpy as np

“专业、务实、高效、创新、把客户的事当成自己的事”是我们每一个人一直以来坚持追求的企业文化。 创新互联是您可以信赖的网站建设服务商、专业的互联网服务提供商! 专注于网站建设、做网站、软件开发、设计服务业务。我们始终坚持以客户需求为导向,结合用户体验与视觉传达,提供有针对性的项目解决方案,提供专业性的建议,创新互联建站将不断地超越自我,追逐市场,引领市场!

a = np.array([1,2,3])

b = np.array([1,2,3])

print((a==b).all())

a = np.array([3,2,1])

b = np.array([1,2,3])

print((a==b).all())

可以用第三方库吧? 抄的。再加上计数,随机数列表就行了。$ pythonpython 2.7.3 (default, mar 14 2014, 11:57:14) [gcc 4.7.2] on linux2type "help", "copyright", "credits" or "license" for more information. a = 1 b = 2 c = 2 d = 4 if a b == c d:... print "ok"... ok

python求e的近似值

自然对数的底数e是由一个重要极限给出的.我们定义:当x趋于无限时,lim(1+1/x)^x=e.

e是一个无限不循环小数,其值约等于2.718281828…,

python3的sympy

print(“字符串”),5/2和5//2的结果是不同的5/2为2.5,5//2为2.

python2需要导入from_future_import division执行普通的除法。

1/2和1//2的结果0.5和0.

%号为取模运算。

乘方运算为2**3,-2**3和-(2**3)是等价的。

from sympy import*导入库

x,y,z=symbols('x y z'),定义变量

init_printing(use_unicode=True)设置打印方式。

python的内部常量有pi,

函数simplify,simplify(sin(x)**2 + cos(x)**2)化简结果为1,

simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))化简结果为x-1。化简伽马函数。simplify(gamma(x)/gamma(x - 2))得(x-2)(x-1)。

expand((x + 1)**2)展开多项式。

expand((x + 1)*(x - 2) - (x - 1)*x)

因式分解。factor(x**2*z + 4*x*y*z + 4*y**2*z)得到z*(x + 2*y)**2

from_future_import division

x,y,z,t=symbols('x y z t')定义变量,

k, m, n = symbols('k m n', integer=True)定义三个整数变量。

f, g, h = symbols('f g h', cls=Function)定义的类型为函数。

factor_list(x**2*z + 4*x*y*z + 4*y**2*z)得到一个列表,表示因式的幂,(1, [(z, 1), (x + 2*y, 2)])

expand((cos(x) + sin(x))**2)展开多项式。

expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3,collected_expr = collect(expr, x)将x合并。将x元素按阶次整合。

collected_expr.coeff(x, 2)直接取出变量collected_expr的x的二次幂的系数。

cancel()is more efficient thanfactor().

cancel((x**2 + 2*x + 1)/(x**2 + x))

,expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1),cancel(expr)

expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x),apart(expr)

asin(1)

trigsimp(sin(x)**2 + cos(x)**2)三角函数表达式化简,

trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)

trigsimp(sin(x)*tan(x)/sec(x))

trigsimp(cosh(x)**2 + sinh(x)**2)双曲函数。

三角函数展开,expand_trig(sin(x + y)),acos(x),cos(acos(x)),expand_trig(tan(2*x))

x, y = symbols('x y', positive=True)正数,a, b = symbols('a b', real=True)实数,z, t, c = symbols('z t c')定义变量的方法。

sqrt(x) == x**Rational(1, 2)判断是否相等。

powsimp(x**a*x**b)幂函数的乘法,不同幂的乘法,必须先定义a和b。powsimp(x**a*y**a)相同幂的乘法。

powsimp(t**c*z**c),注意,powsimp()refuses to do the simplification if it is not valid.

powsimp(t**c*z**c, force=True)这样的话就可以得到化简过的式子。声明强制进行化简。

(z*t)**2,sqrt(x*y)

第一个展开expand_power_exp(x**(a + b)),expand_power_base((x*y)**a)展开,

expand_power_base((z*t)**c, force=True)强制展开。

powdenest((x**a)**b),powdenest((z**a)**b),powdenest((z**a)**b, force=True)

ln(x),x, y ,z= symbols('x y z', positive=True),n = symbols('n', real=True),

expand_log(log(x*y))展开为log(x) + log(y),但是python3没有。这是因为需要将x定义为positive。这是必须的,否则不会被展开。expand_log(log(x/y)),expand_log(log(x**n))

As withpowsimp()andpowdenest(),expand_log()has aforceoption that can be used to ignore assumptions。

expand_log(log(z**2), force=True),强制展开。

logcombine(log(x) + log(y)),logcombine(n*log(x)),logcombine(n*log(z), force=True)。

factorial(n)阶乘,binomial(n, k)等于c(n,k),gamma(z)伽马函数。

hyper([1, 2], [3], z),

tan(x).rewrite(sin)得到用正弦表示的正切。factorial(x).rewrite(gamma)用伽马函数重写阶乘。

expand_func(gamma(x + 3))得到,x*(x + 1)*(x + 2)*gamma(x),

hyperexpand(hyper([1, 1], [2], z)),

combsimp(factorial(n)/factorial(n - 3))化简,combsimp(binomial(n+1, k+1)/binomial(n, k))化简。combsimp(gamma(x)*gamma(1 - x))

自定义函数

def list_to_frac(l):

expr = Integer(0)

for i in reversed(l[1:]):

expr += i

expr = 1/expr

return l[0] + expr

list_to_frac([x, y, z])结果为x + 1/z,这个结果是错误的。

syms = symbols('a0:5'),定义syms,得到的结果为(a0, a1, a2, a3, a4)。

这样也可以a0, a1, a2, a3, a4 = syms, 可能是我的操作错误 。发现python和自动缩进有关,所以一定看好自动缩进的距离。list_to_frac([1, 2, 3, 4])结果为43/30。

使用cancel可以将生成的分式化简,frac = cancel(frac)化简为一个分数线的分式。

(a0*a1*a2*a3*a4 + a0*a1*a2 + a0*a1*a4 + a0*a3*a4 + a0 + a2*a3*a4 + a2 + a4)/(a1*a2*a3*a4 + a1*a2 + a1*a4 + a3*a4 + 1)

a0, a1, a2, a3, a4 = syms定义a0到a4,frac = apart(frac, a0)可将a0提出来。frac=1/(frac-a0)将a0去掉取倒。frac = apart(frac, a1)提出a1。

help("modules"),模块的含义,help("modules yourstr")模块中包含的字符串的意思。,

help("topics"),import os.path + help("os.path"),help("list"),help("open")

# -*- coding: UTF-8 -*-声明之后就可以在ide中使用中文注释。

定义

l = list(symbols('a0:5'))定义列表得到[a0, a1, a2, a3, a4]

fromsympyimport*

x,y,z=symbols('x y z')

init_printing(use_unicode=True)

diff(cos(x),x)求导。diff(exp(x**2), x),diff(x**4, x, x, x)和diff(x**4, x, 3)等价。

diff(expr, x, y, 2, z, 4)求出表达式的y的2阶,z的4阶,x的1阶导数。和diff(expr, x, y, y, z, 4)等价。expr.diff(x, y, y, z, 4)一步到位。deriv = Derivative(expr, x, y, y, z, 4)求偏导。但是不显示。之后用deriv.doit()即可显示

integrate(cos(x), x)积分。定积分integrate(exp(-x), (x, 0, oo))无穷大用2个oo表示。integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))二重积分。print(expr)print的使用。

expr = Integral(log(x)**2, x),expr.doit()积分得到x*log(x)**2 - 2*x*log(x) + 2*x。

integ.doit()和integ = Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -

exp(x))*exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)连用。

limit(sin(x)/x,x,0),not-a-number表示nan算不出来,limit(expr, x, oo),,expr = Limit((cos(x) - 1)/x, x, 0),expr.doit()连用。左右极限limit(1/x, x, 0, '+'),limit(1/x, x, 0, '-')。。

Series Expansion级数展开。expr = exp(sin(x)),expr.series(x, 0, 4)得到1 + x + x**2/2 + O(x**4),,x*O(1)得到O(x),,expr.series(x, 0, 4).removeO()将无穷小移除。exp(x-6).series(x,x0=6),,得到

-5 + (x - 6)**2/2 + (x - 6)**3/6 + (x - 6)**4/24 + (x - 6)**5/120 + x + O((x - 6)**6, (x, 6))最高到5阶。

f=Function('f')定义函数变量和h=Symbol('h')和d2fdx2=f(x).diff(x,2)求2阶,,as_finite_diff(dfdx)函数和as_finite_diff(d2fdx2,[-3*h,-h,2*h]),,x_list=[-3,1,2]和y_list=symbols('a b c')和apply_finite_diff(1,x_list,y_list,0)。

Eq(x, y),,solveset(Eq(x**2, 1), x)解出来x,当二式相等。和solveset(Eq(x**2 - 1, 0), x)等价。solveset(x**2 - 1, x)

solveset(x**2 - x, x)解,solveset(x - x, x, domain=S.Reals)解出来定义域。solveset(exp(x), x)    # No solution exists解出EmptySet()表示空集。

等式形式linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))和矩阵法linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))得到{(-y - 1, y, 2)}

A*x = b 形式,M=Matrix(((1,1,1,1),(1,1,2,3))),system=A,b=M[:,:-1],M[:,-1],linsolve(system,x,y,z),,solveset(x**3 - 6*x**2 + 9*x, x)解多项式。roots(x**3 - 6*x**2 + 9*x, x),得出,{3: 2, 0: 1},有2个3的重根,1个0根。solve([x*y - 1, x - 2], x, y)解出坐标。

f, g = symbols('f g', cls=Function)函数的定义,解微分方程diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))再和dsolve(diffeq,f(x))结合。得到Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2),dsolve(f(x).diff(x)*(1 - sin(f(x))), f(x))解出来Eq(f(x) + cos(f(x)), C1),,

Matrix([[1,-1],[3,4],[0,2]]),,Matrix([1, 2, 3])列表示。M=Matrix([[1,2,3],[3,2,1]])

N=Matrix([0,1,1])

M*N符合矩阵的乘法。M.shape显示矩阵的行列数。

M.row(0)获取M的第0行。M.col(-1)获取倒数第一列。

M.col_del(0)删掉第1列。M.row_del(1)删除第二行,序列是从0开始的。M = M.row_insert(1, Matrix([[0, 4]]))插入第二行,,M = M.col_insert(0, Matrix([1, -2]))插入第一列。

M+N矩阵相加,M*N,3*M,M**2,M**-1,N**-1表示求逆。M.T求转置。

eye(3)单位。zeros(2, 3),0矩阵,ones(3, 2)全1,diag(1, 2, 3)对角矩阵。diag(-1, ones(2, 2), Matrix([5, 7, 5]))生成Matrix([

[-1, 0, 0, 0],

[ 0, 1, 1, 0],

[ 0, 1, 1, 0],

[ 0, 0, 0, 5],

[ 0, 0, 0, 7],

[ 0, 0, 0, 5]])矩阵。

Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])

一行一行显示,,M.det()求行列式。M.rref()矩阵化简。得到结果为Matrix([

[1, 0,  1,  3],

[0, 1, 2/3, 1/3],

[0, 0,  0,  0]]), [0, 1])。

M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]]),M.nullspace()

Columnspace

M.columnspace()和M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])

M = Matrix([[3, -2,  4, -2], [5,  3, -3, -2], [5, -2,  2, -2], [5, -2, -3,  3]])和M.eigenvals()得到{3: 1, -2: 1, 5: 2},,This means thatMhas eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.

P, D = M.diagonalize(),P得Matrix([

[0, 1, 1,  0],

[1, 1, 1, -1],

[1, 1, 1,  0],

[1, 1, 0,  1]]),,D为Matrix([

[-2, 0, 0, 0],

[ 0, 3, 0, 0],

[ 0, 0, 5, 0],

[ 0, 0, 0, 5]])

P*D*P**-1 == M返回为True。lamda = symbols('lamda')。

lamda = symbols('lamda')定义变量,p = M.charpoly(lamda)和factor(p)

expr = x**2 + x*y,srepr(expr)可以将表达式说明计算法则,"Add(Pow(Symbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))"。。

x = symbols('x')和x = Symbol('x')是一样的。srepr(x**2)得到"Pow(Symbol('x'), Integer(2))"。Pow(x, 2)和Mul(x, y)得到x**2。x*y

type(2)得到class 'int',type(sympify(2))得到class 'sympy.core.numbers.Integer'..srepr(x*y)得到"Mul(Symbol('x'), Symbol('y'))"。。。

Add(Pow(x, 2), Mul(x, y))得到"Add(Mul(Integer(-1), Pow(Symbol('x'), Integer(2))), Mul(Rational(1, 2), sin(Mul(Symbol('x'), Symbol('y')))), Pow(Symbol('y'), Integer(-1)))"。。Pow函数为幂次。

expr = Add(x, x),expr.func。。Integer(2).func,class 'sympy.core.numbers.Integer',,Integer(0).func和Integer(-1).func,,,expr = 3*y**2*x和expr.func得到class 'sympy.core.mul.Mul',,expr.args将表达式分解为得到(3, x, y**2),,expr.func(*expr.args)合并。expr == expr.func(*expr.args)返回True。expr.args[2]得到y**2,expr.args[1]得到x,expr.args[0]得到3.。

expr.args[2].args得到(y, 2)。。y.args得到空括号。Integer(2).args得到空括号。

from sympy import *

E**(I*pi)+1,可以看出,I和E,pi已将在sympy内已定义。

x=Symbol('x'),,expand( E**(I*x) )不能展开,expand(exp(I*x),complex=True)可以展开,得到I*exp(-im(x))*sin(re(x)) + exp(-im(x))*cos(re(x)),,x=Symbol("x",real=True)将x定义为实数。再展开expand(exp(I*x),complex=True)得到。I*sin(x) + cos(x)。。

tmp = series(exp(I*x), x, 0, 10)和pprint(tmp)打印出来可读性好,print(tmp)可读性不好。。pprint将公式用更好看的格式打印出来,,pprint( series( cos(x), x, 0, 10) )

integrate(x*sin(x), x),,定积分integrate(x*sin(x), (x, 0, 2*pi))。。

用双重积分求解球的体积。

x, y, r = symbols('x,y,r')和2 * integrate(sqrt(r*r-x**2), (x, -r, r))计算球的体积。计算不来,是因为sympy不知道r是大于0的。r = symbols('r', positive=True)这样定义r即可。circle_area=2*integrate(sqrt(r**2-x**2),(x,-r,r))得到。circle_area=circle_area.subs(r,sqrt(r**2-x**2))将r替换。

integrate(circle_area,(x,-r,r))再积分即可。

expression.sub([(x,y),(y,x)])又换到原来的状况了。

expression.subs(x, y),,将算式中的x替换成y。。

expression.subs({x:y,u:v}) : 使用字典进行多次替换。。

expression.subs([(x,y),(u,v)]) : 使用列表进行多次替换。。

python新手代码问题?

判断元素与集合归属关系可以直接用in,python内建的循环会帮你处理比较:

国家="中国"

a = ["美国","加拿大","澳大利亚"]

b = ["中国","日本","印度"]

if 国家 in a:

print("a")

elif 国家 in b:

print("b")

else:

print("ERROR")

用python做图形界面,然后还要发布为应用程序的话,有很多框架,比如Qt for Python,也就是常说的PyQt。比较推荐这个,因为算是目前比较流行的,而且不难入门,具体可以在百度上搜Qt或者PyQt,到官网去下载框架。

PyQt下载:

一些教程:

(这个是翻译的)

(这个是源教程)

当然还有很多,网上搜PyQt教程就可以。

盘点Python常用的模块和包

模块

1.定义

计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块。

2.优点:

提高代码的可维护性。

提高代码的复用,当模块完成时就可以在其他代码中调用。

引用其他模块,包含python内置模块和其他第三方模块。

避免函数名和变量名等名称冲突。

python内建模块:

1.sys模块

2.random模块

3.os模块:

os.path:讲解

数据可视化

1.matplotlib :

是Python可视化程序库的泰斗,它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。

访问:

颜色:

教程:

2.Seaborn:

它是构建在matplotlib的基础上的,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。

访问:

3.ggplot:

gplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图

访问:

4.Mayavi:

Mayavi2完全用Python编写,因此它不但是一个方便实用的可视化软件,而且可以方便地用Python编写扩展,嵌入到用户编写的Python程序中,或者直接使用其面向脚本的API:mlab快速绘制三维图

访问:

讲解:

5.TVTK:

TVTK库对标准的VTK库进行包装,提供了Python风格的API、支持Trait属性和numpy的多维数组。

VTK () 是一套三维的数据可视化工具,它由C++编写,包涵了近千个类帮助我们处理和显示数据

讲解:

机器学习

1.Scikit-learn

是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)。

访问:

讲解:

2.Tensorflow

最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。

相关推荐:《Python视频教程》

Web框架

1.Tornado

访问:

2.Flask

访问:

3.Web.py

访问:

4.django

5.cherrypy

6.jinjs

GUI 图形界面

1.Tkinter

2.wxPython

3.PyGTK

4.PyQt

5.PySide

科学计算

教程

1.numpy

访问

讲解

2.sympy

sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题

访问

讲解

解方程

3.SciPy

官网

讲解

4.pandas

官网

讲解

5.blaze

官网

密码学

1.cryptography

2.hashids

3.Paramiko

4.Passlib

5.PyCrypto

6.PyNacl

爬虫相关

requests

scrapy

pyspider

portia

html2text

BeautifulSoup

lxml

selenium

mechanize

PyQuery

creepy

gevent

一个高并发的网络性能库

图像处理

bigmoyan

Python Imaging Library(PIL)

pillow:

自然语言处理

1.nltk:

教程

2.snownlp

3.Pattern

4.TextBlob

5.Polyglot

6.jieba:

数据库驱动

mysql-python

PyMySQL

PyMongo

pymongo

MongoDB库

访问:

redis

Redis库

访问:

cxOracle

Oracle库

访问:

SQLAlchemy

SQL工具包及对象关系映射(ORM)工具

访问:

peewee,

SQL工具包及对象关系映射(ORM)工具

访问:

torndb

Tornado原装DB

访问:

Web

pycurl

URL处理工具

smtplib模块

发送电子邮件

其他库暂未分类

1.PyInstaller:

是一个十分有用的第三方库,它能够在Windows、Linux、 Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包, Python 程序可以在没有安装 Python 的环境中运行,也可以作为一个 独立文件方便传递和管理。

2.Ipython

一种交互式计算和开发环境

讲解

命令

ls、cd 、run、edit、clear、exist

python 怎么表示无限接近1?

在当前计算机的世界里,没有无限:

在计算机的的世界里,数字的大小也没有无限。计算机器数是使用有限长度的的空间存储的,因此,数的极限大小与精度与存储空间的大小相关,也是有限的。


本文名称:python极限函数,函数极限笔记
标题URL:http://kswsj.cn/article/hdiipg.html

其他资讯