python递归函数查找 Python递归函数题目-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

python递归函数查找 Python递归函数题目

python如何用递归函数求1+2+3+4+5的值

python用递归函数求1+2+3+4+5的值的方法:

创新互联建站是专业的开阳网站建设公司,开阳接单;提供成都做网站、网站设计、外贸营销网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行开阳网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

1、写出临界条件

2、找这一次和上一次的关系

3、假设当前函数已经能用,调用自身计算上一次的结果,再求出本次的结果

代码实现如下:

Python 实现递归

一、使用递归的背景

先来看一个☝️接口结构:

这个孩子,他是一个列表,下面有6个元素

展开children下第一个元素[0]看看:

发现[0]除了包含一些字段信息,还包含了 children 这个字段(喜当爹),同时这个children下包含了2个元素:

展开他的第一个元素,不出所料,也含有children字段(人均有娃)

可以理解为children是个对象,他包含了一些属性,特别的是其中有一个属性与父级children是一模一样的,他包含父级children所有的属性。

比如每个children都包含了一个name字段,我们要拿到所有children里name字段的值,这时候就要用到递归啦~

二、find_children.py

拆分理解:

1.首先import requests库,用它请求并获取接口返回的数据

2.若children以上还有很多层级,可以缩小数据范围,定位到children的上一层级

3.来看看定义的函数

我们的函数调用:find_children(node_f, 'children')

其中,node_f:json字段

    children:递归对象

 以下这段是实现递归的核心:

   if items['children']:

 items['children']不为None,表示该元素下的children字段还有子类数据值,此时满足if条件,可理解为 if 1。

 items['children']为None,表示该元素下children值为None,没有后续可递归值,此时不满足if条件,可理解为 if 0,不会再执行if下的语句(不会再递归)。

至此,每一层级中children的name以及下一层级children的name就都取出来了

希望到这里能帮助大家理解递归的思路,以后根据这个模板直接套用就行

(晚安啦~)

源码参考:

python 用递归寻找list中第二大的数字

基本思想是先找到最大的两个元素,而不只是次大元素

基础情况:长度为2列表的最大两个元素,长度为3列表的最大的两个元素

递归情况:长度为n的列表的最大的两个元素为前n-1项最大的两个元素与最后一个元素,这三个元素中最大的两个元素

def large2(l):

if len(l) == 2:

if l[0]l[1]:

l[0],l[1]=l[1],l[0]

return l

elif len(l) == 3:

t = large2(l[0:-1])

if t[1]=l[-1]:

return [t[1],l[2]]

else:

if t[0]=l[2]:

return t

else:

return [l[2],t[1]]

else:

return large2(large2(l[0:-1])+[l[-1]])

l = [1,6,3,7,3,7,4,3,3,2,9,5]

print large2(l)[0]

题目真的不是那么简单,能满足一下我的好奇心么,这是什么学校的题目啊

Python3:怎么通过递归函数

函数的递归调用

递归问题是一个说简单也简单,说难也有点难理解的问题.我想非常有必要对其做一个总结.

首先理解一下递归的定义,递归就是直接或间接的调用自身.而至于什么时候要用到递归,递归和非递归又有那些区别?又是一个不太容易掌握的问题,更难的是对于递归调用的理解.下面我们就从程序+图形的角度对递归做一个全面的阐述.

我们从常见到的递归问题开始:

1 阶层函数

#include iostream

using namespace std;

int factorial(int n)

{

if (n == 0)

{

return 1;

}

else

{

int result = factorial(n-1);

return n * result;

}

}

int main()

{

int x = factorial(3);

cout x endl;

return 0;

}

这是一个递归求阶层函数的实现。很多朋友只是知道该这么实现的,也清楚它是通过不断的递归调用求出的结果.但他们有些不清楚中间发生了些什么.下面我们用图对此做一个清楚的流程:

根据上面这个图,大家可以很清楚的看出来这个函数的执行流程。我们的阶层函数factorial被调用了4次.并且我们可以看出在调用后面的调用中,前面的调用并不退出。他们同时存在内存中。可见这是一件很浪费资源的事情。我们该次的参数是3.如果我们传递10000呢。那结果就可想而知了.肯定是溢出了.就用int型来接收结果别说10000,100就会产生溢出.即使不溢出我想那肯定也是见很浪费资源的事情.我们可以做一个粗略的估计:每次函数调用就单变量所需的内存为:两个int型变量.n和result.在32位机器上占8B.那么10000就需要10001次函数调用.共需10001*8/1024 = 78KB.这只是变量所需的内存空间.其它的函数调用时函数入口地址等仍也需要占用内存空间。可见递归调用产生了一个不小的开销.

2 斐波那契数列

int Fib(int n)

{

if (n = 1)

{

return n;

}

else

{

return Fib(n-1) + Fib(n-2);

}

}

这个函数递归与上面的那个有些不同.每次调用函数都会引起另外两次的调用.最后将结果逐级返回.

我们可以看出这个递归函数同样在调用后买的函数时,前面的不退出而是在等待后面的结果,最后求出总结果。这就是递归.

3

#include iostream

using namespace std;

void recursiveFunction1(int num)

{

if (num 5)

{

cout num endl;

recursiveFunction1(num+1);

}

}

void recursiveFunction2(int num)

{

if (num 5)

{

recursiveFunction2(num+1);

cout num endl;

}

}

int main()

{

recursiveFunction1(0);

recursiveFunction2(0);

return 0;

}

运行结果:

1

2

3

4

4

3

2

1

该程序中有两个递归函数。传递同样的参数,但他们的输出结果刚好相反。理解这两个函数的调用过程可以很好的帮助我们理解递归:

我想能够把上面三个函数的递归调用过程理解了,你已经把递归调用理解的差不多了.并且从上面的递归调用中我们可以总结出递归的一个规律:他是逐级的调用,而在函数结束的时候是从最后面往前反序的结束.这种方式是很占用资源,也很费时的。但是有的时候使用递归写出来的程序很容易理解,很易读.

为什么使用递归:

1 有时候使用递归写出来的程序很容易理解,很易读.

2 有些问题只有递归能够解决.非递归的方法无法实现.如:汉诺塔.

递归的条件:

并不是说所有的问题都可以使用递归解决,他必须的满足一定的条件。即有一个出口点.也就是说当满足一定条件时,程序可以结束,从而完成递归调用,否则就陷入了无限的递归调用之中了.并且这个条件还要是可达到的.

递归有哪些优点:

易读,容易理解,代码一般比较短.

递归有哪些缺点:

占用内存资源多,费时,效率低下.

因此在我们写程序的时候不要轻易的使用递归,虽然他有他的优点,但是我们要在易读性和空间,效率上多做权衡.一般情况下我们还是使用非递归的方法解决问题.若一个算法非递归解法非常难于理解。我们使用递归也未尝不可.如:二叉树的遍历算法.非递归的算法很难与理解.而相比递归算法就容易理解很多.

对于递归调用的问题,我们在前一段时间写图形学程序时,其中有一个四连同填充算法就是使用递归的方法。结果当要填充的图形稍微大一些时,程序就自动关闭了.这不是一个人的问题,所有人写出来的都是这个问题.当时我们给与的解释就是堆栈溢出。就多次递归调用占用太多的内存资源致使堆栈溢出,程序没有内存资源执行下去,从而被操作系统强制关闭了.这是一个真真切切的例子。所以我们在使用递归的时候需要权衡再三.

python递归函数

def Sum(m): #函数返回两个值:递归次数,所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] print Sum(10)[0] 10 print Sum(5)[0] 5

python-027-递归-求序列最大值、计算第n个调和数、转换字符到整数

递归,emmmmmmm,拥有一种魅力,接近人的立即思维,容易理解,又不容易理解。

递归算法的优点: 它使我们能够简洁地利用重复结构呈现诸多问题。通过使算法描述以递归的方式利用重复结构,我们经常可以避开复杂的案例分析和嵌套循环。这种算法会得出可读性更强的算法描述,而且十分有效。

但是 ,递归的使用要根据相应的成本来看,每次递归python解释器都会给一个空间来记录函数活动状态。但是有时候内存成本很高,有时候将递归算法转为非递归算法是一种好办法。

当然我们可以换解释器、使用堆栈数据结构等方法,来管理递归的自身嵌套,减小储存的活动信息,来减小内存消耗。

最近算法学到了递归这一块,写了三个课后习题:

给一个序列S,其中包含n个元素,用递归查找其最大值。

输出:

调和数:Hn = 1 + 1/2 + 1/3 + ··· + 1/n

输出:

例如:"12345"class 'str' 转换为12345class 'int'

输出:

递归分为线性递归、二路递归、多路递归。


网页名称:python递归函数查找 Python递归函数题目
转载注明:http://kswsj.cn/article/hpeejp.html

其他资讯