第11课:SparkStreaming源码解读之Driver中的ReceiverTracker架构设计以及具体实现彻底研究-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

第11课:SparkStreaming源码解读之Driver中的ReceiverTracker架构设计以及具体实现彻底研究

上节课将到了Receiver是如何不断的接收数据的,并且接收到的数据的元数据会汇报给ReceiverTracker,下面我们看看ReceiverTracker具体的功能及实现。

成都创新互联是一家朝气蓬勃的网站建设公司。公司专注于为企业提供信息化建设解决方案。从事网站开发,网站制作,网站设计,网站模板,微信公众号开发,软件开发,小程序开发,十余年建站对成都VR全景等多个领域,拥有丰富的网站运维经验。

一、 ReceiverTracker主要的功能:

  1. 在Executor上启动Receivers。

  2. 停止Receivers 。

  3. 更新Receiver接收数据的速率(也就是限流)

  4. 不断的等待Receivers的运行状态,只要Receivers停止运行,就重新启动Receiver。也就是Receiver的容错功能。

  5. 接受Receiver的注册。

  6. 借助ReceivedBlockTracker来管理Receiver接收数据的元数据。

  7. 汇报Receiver发送过来的错误信息

ReceiverTracker 管理了一个消息通讯体ReceiverTrackerEndpoint,用来与Receiver或者ReceiverTracker 进行消息通信。

在ReceiverTracker的start方法中,实例化了ReceiverTrackerEndpoint,并且在Executor上启动Receivers:

/** Start the endpoint and receiver execution thread. */
def start(): Unit = synchronized {
  if (isTrackerStarted) {
    throw new SparkException("ReceiverTracker already started")
  }

  if (!receiverInputStreams.isEmpty) {
    endpoint = ssc.env.rpcEnv.setupEndpoint(
      "ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv))
    if (!skipReceiverLaunch) launchReceivers()
    logInfo("ReceiverTracker started")
    trackerState = Started
  }
}

启动Receivr,其实是ReceiverTracker给ReceiverTrackerEndpoint发送了一个本地消息,ReceiverTrackerEndpoint将Receiver封装成RDD以job的方式提交给集群运行。

endpoint.send(StartAllReceivers(receivers))

这里的endpoint就是ReceiverTrackerEndpoint的引用。

Receiver启动后,会向ReceiverTracker注册,注册成功才算正式启动了。

override protected def onReceiverStart(): Boolean = {
  val msg = RegisterReceiver(
    streamId, receiver.getClass.getSimpleName, host, executorId, endpoint)
  trackerEndpoint.askWithRetry[Boolean](msg)
}

当Receiver端接收到数据,达到一定的条件需要将数据写入BlockManager,并且将数据的元数据汇报给ReceiverTracker:

/** Store block and report it to driver */
def pushAndReportBlock(
    receivedBlock: ReceivedBlock,
    metadataOption: Option[Any],
    blockIdOption: Option[StreamBlockId]
  ) {
  val blockId = blockIdOption.getOrElse(nextBlockId)
  val time = System.currentTimeMillis
  val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock)
  logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms")
  val numRecords = blockStoreResult.numRecords
  val blockInfo = ReceivedBlockInfo(streamId, numRecords, metadataOption, blockStoreResult)
  trackerEndpoint.askWithRetry[Boolean](AddBlock(blockInfo))
  logDebug(s"Reported block $blockId")
}

当ReceiverTracker收到元数据后,会在线程池中启动一个线程来写数据:

case AddBlock(receivedBlockInfo) =>
  if (WriteAheadLogUtils.isBatchingEnabled(ssc.conf, isDriver = true)) {
    walBatchingThreadPool.execute(new Runnable {
      override def run(): Unit = Utils.tryLogNonFatalError {
        if (active) {
          context.reply(addBlock(receivedBlockInfo))
        } else {
          throw new IllegalStateException("ReceiverTracker RpcEndpoint shut down.")
        }
      }
    })
  } else {
    context.reply(addBlock(receivedBlockInfo))
  }

数据的元数据是交由ReceivedBlockTracker管理的。

数据最终被写入到streamIdToUnallocatedBlockQueues中:一个流对应一个数据块信息的队列。

private type ReceivedBlockQueue = mutable.Queue[ReceivedBlockInfo]

private val streamIdToUnallocatedBlockQueues = new mutable.HashMap[Int, ReceivedBlockQueue]

每当Streaming 触发job时,会将队列中的数据分配成一个batch,并将数据写入timeToAllocatedBlocks数据结构。

private val timeToAllocatedBlocks = new mutable.HashMap[Time, AllocatedBlocks]
....
def allocateBlocksToBatch(batchTime: Time): Unit = synchronized {
  if (lastAllocatedBatchTime == null || batchTime > lastAllocatedBatchTime) {
    val streamIdToBlocks = streamIds.map { streamId =>
        (streamId, getReceivedBlockQueue(streamId).dequeueAll(x => true))
    }.toMap
    val allocatedBlocks = AllocatedBlocks(streamIdToBlocks)
    if (writeToLog(BatchAllocationEvent(batchTime, allocatedBlocks))) {
      timeToAllocatedBlocks.put(batchTime, allocatedBlocks)
      lastAllocatedBatchTime = batchTime
    } else {
      logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery")
    }
  } else {
    // This situation occurs when:
    // 1. WAL is ended with BatchAllocationEvent, but without BatchCleanupEvent,
    // possibly processed batch job or half-processed batch job need to be processed again,
    // so the batchTime will be equal to lastAllocatedBatchTime.
    // 2. Slow checkpointing makes recovered batch time older than WAL recovered
    // lastAllocatedBatchTime.
    // This situation will only occurs in recovery time.
    logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery")
  }
}

可见一个batch会包含多个流的数据。

每当Streaming 的一个job运行完毕后:

private def handleJobCompletion(job: Job, completedTime: Long) {
  val jobSet = jobSets.get(job.time)
  jobSet.handleJobCompletion(job)
  job.setEndTime(completedTime)
  listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
  logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
  if (jobSet.hasCompleted) {
    jobSets.remove(jobSet.time)
    jobGenerator.onBatchCompletion(jobSet.time)
    logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
      jobSet.totalDelay / 1000.0, jobSet.time.toString,
      jobSet.processingDelay / 1000.0
    ))
    listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
  }
  ...

JobScheduler会调用handleJobCompletion方法,最终会触发

jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)

这里的maxRememberDuration是DStream中每个时刻生成的RDD保留的最长时间。

def cleanupOldBatches(cleanupThreshTime: Time, waitForCompletion: Boolean): Unit = synchronized {
  require(cleanupThreshTime.milliseconds < clock.getTimeMillis())
  val timesToCleanup = timeToAllocatedBlocks.keys.filter { _ < cleanupThreshTime }.toSeq
  logInfo("Deleting batches " + timesToCleanup)
  if (writeToLog(BatchCleanupEvent(timesToCleanup))) {
    timeToAllocatedBlocks --= timesToCleanup
    writeAheadLogOption.foreach(_.clean(cleanupThreshTime.milliseconds, waitForCompletion))
  } else {
    logWarning("Failed to acknowledge batch clean up in the Write Ahead Log.")
  }
}

而最后

listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))

这个代码会调用

case batchCompleted: StreamingListenerBatchCompleted =>
  listener.onBatchCompleted(batchCompleted)
  
  ... 一路跟着下去...
  
  /**
 * A RateController that sends the new rate to receivers, via the receiver tracker.
 */
private[streaming] class ReceiverRateController(id: Int, estimator: RateEstimator)
    extends RateController(id, estimator) {
  override def publish(rate: Long): Unit =
    ssc.scheduler.receiverTracker.sendRateUpdate(id, rate)
}
/** Update a receiver's maximum ingestion rate */
def sendRateUpdate(streamUID: Int, newRate: Long): Unit = synchronized {
  if (isTrackerStarted) {
    endpoint.send(UpdateReceiverRateLimit(streamUID, newRate))
  }
}
case UpdateReceiverRateLimit(streamUID, newRate) =>
  for (info <- receiverTrackingInfos.get(streamUID); eP <- info.endpoint) {
    eP.send(UpdateRateLimit(newRate))
  }

发送调整速率的消息给Receiver,Receiver接到消息后,最终通过BlockGenerator来调整数据的写入的时间,而控制数据流的速率。

case UpdateRateLimit(eps) =>
  logInfo(s"Received a new rate limit: $eps.")
  registeredBlockGenerators.foreach { bg =>
    bg.updateRate(eps)
  }

备注:

1、DT大数据梦工厂微信公众号DT_Spark 
2、IMF晚8点大数据实战YY直播频道号:68917580
3、新浪微博: http://www.weibo.com/ilovepains


本文题目:第11课:SparkStreaming源码解读之Driver中的ReceiverTracker架构设计以及具体实现彻底研究
URL网址:http://kswsj.cn/article/iigceo.html

其他资讯