鲁春利的工作笔记,谁说程序员不能有文艺范?
创新互联长期为千余家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为千山企业提供专业的网站设计制作、成都网站设计,千山网站改版等技术服务。拥有十年丰富建站经验和众多成功案例,为您定制开发。
一个最简单的MapReduce程序
package com.lucl.hadoop.mapreduce; public class MiniMRDriver extends Configured implements Tool { public static void main(String[] args) { try { ToolRunner.run(new MiniMRDriver(), args); } catch (Exception e) { e.printStackTrace(); } } @Override public int run(String[] args) throws Exception { Job job = Job.getInstance(this.getConf(), this.getClass().getSimpleName()); job.setJarByClass(MiniMRDriver.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); return job.waitForCompletion(true) ? 0 : 1; } }
查看MapReduce任务的数据
[hadoop@nnode code]$ hdfs dfs -text /data/HTTP_SITE_FLOW.log 视频网站 15 1527 信息安全 20 3156 站点统计 24 6960 搜索引擎 28 3659 站点统计 3 1938 综合门户 15 1938 搜索引擎 21 9531 搜索引擎 63 11058 [hadoop@nnode code]$
打包运行该MapReduce程序
[hadoop@nnode code]$ hadoop jar MiniMR.jar /data/HTTP_SITE_FLOW.log /201511302119 15/11/30 21:19:46 INFO client.RMProxy: Connecting to ResourceManager at nnode/192.168.137.117:8032 15/11/30 21:19:48 INFO input.FileInputFormat: Total input paths to process : 1 15/11/30 21:19:48 INFO mapreduce.JobSubmitter: number of splits:1 15/11/30 21:19:49 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1448889273221_0001 15/11/30 21:19:50 INFO impl.YarnClientImpl: Submitted application application_1448889273221_0001 15/11/30 21:19:50 INFO mapreduce.Job: The url to track the job: http://nnode:8088/proxy/application_1448889273221_0001/ 15/11/30 21:19:50 INFO mapreduce.Job: Running job: job_1448889273221_0001 15/11/30 21:20:26 INFO mapreduce.Job: Job job_1448889273221_0001 running in uber mode : false 15/11/30 21:20:26 INFO mapreduce.Job: map 0% reduce 0% 15/11/30 21:20:59 INFO mapreduce.Job: map 100% reduce 0% 15/11/30 21:21:30 INFO mapreduce.Job: map 100% reduce 100% 15/11/30 21:21:31 INFO mapreduce.Job: Job job_1448889273221_0001 completed successfully 15/11/30 21:21:31 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=254 FILE: Number of bytes written=213863 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=277 HDFS: Number of bytes written=194 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=30256 Total time spent by all reduces in occupied slots (ms)=27787 Total time spent by all map tasks (ms)=30256 Total time spent by all reduce tasks (ms)=27787 Total vcore-seconds taken by all map tasks=30256 Total vcore-seconds taken by all reduce tasks=27787 Total megabyte-seconds taken by all map tasks=30982144 Total megabyte-seconds taken by all reduce tasks=28453888 Map-Reduce Framework Map input records=8 Map output records=8 Map output bytes=232 Map output materialized bytes=254 Input split bytes=103 Combine input records=0 Combine output records=0 Reduce input groups=8 Reduce shuffle bytes=254 Reduce input records=8 Reduce output records=8 Spilled Records=16 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=182 CPU time spent (ms)=2000 Physical memory (bytes) snapshot=305459200 Virtual memory (bytes) snapshot=1697824768 Total committed heap usage (bytes)=136450048 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=174 File Output Format Counters Bytes Written=194 [hadoop@nnode code]$
查看输出结果
[hadoop@nnode code]$ hdfs dfs -ls /201511302119 Found 2 items -rw-r--r-- 2 hadoop hadoop 0 2015-11-30 21:21 /201511302119/_SUCCESS -rw-r--r-- 2 hadoop hadoop 194 2015-11-30 21:21 /201511302119/part-r-00000 [hadoop@nnode code]$ hdfs dfs -text /201511302119/part-r-00000 0 视频网站 15 1527 22 信息安全 20 3156 44 站点统计 24 6960 66 搜索引擎 28 3659 88 站点统计 3 1938 109 综合门户 15 1938 131 搜索引擎 21 9531 153 搜索引擎 63 11058 [hadoop@nnode code]$
在这里没有指定Mapper类、Reducer类,并通过FileInputFormat和FileOutputFormat指定了输入数据及输出结果存储路径,执行后把行偏移量和行内容保存到了指定的输出路径下。
FileInputFormat的默认实现为TextInputFormat,专门用来处理文本数据,以回车换行符作为一行的分割标记,其中key为该行的行偏移量,value为这一行内容。
类定义如下:
public class TextInputFormat extends FileInputFormat{ @Override public RecordReader createRecordReader(InputSplit split, TaskAttemptContext context) { // 略 return new LineRecordReader(recordDelimiterBytes); } @Override protected boolean isSplitable(JobContext context, Path file) { // 是否可切片 } }
在Job任务中可以通过public void setInputFormatClass(Class extends InputFormat> cls)方法设定希望使用的InputFormat格式。
public abstract class InputFormat{ public abstract List getSplits(JobContext context) throws IOException, InterruptedException; public abstract RecordReader createRecordReader(InputSplit split, TaskAttemptContext context ) throws IOException, InterruptedException; }
文件在HDFS上是以Block块的形式存储的,而在MapReduce计算中则是以划分的切片(split后称为split分片或chunk)进行读取的,每个split的就对应一个mapper task,split的数量决定了mappertask的数量。
注意:MapReduce是由Mapper和Reducer组成的,MapperTask由split决定,那么Reducer由什么来决定呢?后面会逐渐通过示例代码进行说明
List
RecordReader InputSplit类定义 RecordReader类定义 InputSplit描述了数据块的切分方式,RecordReader类则是实际用来加载split分片数据,并把数据转换为适合Mapper类里面map()方法处理的 RecordReader实例是由输入格式定义的,默认的输入格式为TextInputFormat,提供了一个LineRecordReader,把每一行的行偏移量作为key,把内容作为value。RecordReader会在输入块上被反复调用,直到整个输入块被处理完毕,每一次调用RecordReader都会调用Mapper类的map()函数。 TextInputFormat并没有getSplits的实现,而是其父类FileInputFormat进行了实现。 说明:List LineRecordReader提供对文本数据的读取解析,并依次调用Mapper的map()函数传入 个人理解:TextInputFormat通过Split将文件逻辑上进行分片,对于每一个分片分别new一个LineRecordReader进行解析处理,解析后的买一行调用一次map()函数,而map task仍是一个。public abstract class InputSplit {
// Split分片的大小,用来实现输入的split的排序
public abstract long getLength() throws IOException, InterruptedException;
// 用来获取存储分片的位置列表
public abstract String[] getLocations() throws IOException, InterruptedException;
}
public abstract class RecordReader
public abstract class FileInputFormat
public class LineRecordReader extends RecordReader
网页题目:Hadoop2.6.0学习笔记(四)TextInputFormat及RecordReader解析
链接地址:http://kswsj.cn/article/ishdsi.html