当Mysql行锁遇到复合主键与多列索引的示例分析-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

当Mysql行锁遇到复合主键与多列索引的示例分析

这篇文章给大家分享的是有关当MySQL行锁遇到复合主键与多列索引的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

创新互联是一家专业提供石屏企业网站建设,专注与成都做网站、网站制作、H5网站设计、小程序制作等业务。10年已为石屏众多企业、政府机构等服务。创新互联专业网站制作公司优惠进行中。

背景

在配合其他项目组做系统压测,过程中出现了偶发的死锁问题。分析代码后发现有复合主键的update情况,更新复合主键表时只使用了一个字段更新,同时在事务内又有对该表的insert操作,结果出现了偶发的死锁问题。

比如表t_lock_test中有两个主键都为primary key(a,b) ,但是更新时却通过update t_lock_test .. where a = ? ,然后该事务内又有insert into t_lock_test values(...)

InnoDB中的锁算法是Next-Key Locking,很可能是因为这个点导致的死锁,但是复合主键下会出发Next-Key Locking吗,那多列联合unique索引下又会触发Next-Key Locking吗,书上并没有找到答案,得实际测试一下。

InnoDB中的锁

锁是数据库系统区别于文件系统的一个关键特性。锁机制用于管理对共享资源的并发访[插图]。InnoDB存储引擎会在行级别上对表数据上锁,这固然不错。不过InnoDB存储引擎也会在数据库内部其他多个地方使用锁,从而允许对多种不同资源提供并发访问。例如,操作缓冲池中的LRU列表,删除、添加、移动LRU列表中的元素,为了保证一致性,必须有锁的介入。数据库系统使用锁是为了支持对共享资源进行并发访问,提供数据的完整性和一致性。

由于使用锁时基本都是在InnoDB存储引擎下,所以跳过MyISAM,直接讨论InnoDB。

锁类型

InnoDB存储引擎实现了如下两种标准的行级锁:

  • 共享锁(S Lock),允许事务读一行数据

  • 排它锁(x lOCK),允许事务删除或更新一条数据

如果一个事务T1已经获得了r的共享锁,那么另外的事务T2可以立即获得行r的共享锁,因为读取并没有改变r的数据,成这种情况为锁兼容(Lock Compatible)。但若有其他的事务T3箱获得行r的排它锁,则比如等待T1、T2释放行r上的共享锁——这种情况称为锁不兼容。

排它锁和共享锁的兼容性:

\XS
X不兼容不兼容
S不兼容兼容

InnoDB中对数据进行Update操作会产生行锁,也可以显示的添加行锁(也就是平时所说的“悲观锁”)

select for update

锁算法

InnoDB有3种行锁的算法,其分别是:

Record Lock:单个行记录上的锁,就是字面意思的行锁

Record Lock会锁住索引记录(注意这里说的是索引,因为InnoDB下主键索引即数据),ruguo InnoDB存储引擎表在建立的时候没有设置任何一个索引,那么这时对InnoDB存储引擎会使用隐士的主键来进行锁定。

Gap Lock:间隙锁,锁定一个范围,但不包含记录本身

Next-Key Lock:Gap Lock+Record Lock,锁定一个范围,并且锁定记录本身

Gap Lock和Next-Key Lock的锁定区间划分原则是一样的。

例如一个索引有10/11/13和20这四个值,那么该索引被划分的的区间为:

(-∞,10]
(10,11]
(11,13]
(13,20]
(20,+∞]

采用Next-Key Lock的锁定技术称为Next-Key Locking。其设计的目的是为了解决Phantom Problem,这将在下一小节中介绍。而利用这种锁定技术,锁定的不是单个值,而是一个范围,是谓词锁(predict lock)的一种改进。

当查询的索引含有唯一(unique)属性时(主键索引,唯一索引)InnoDB存储引擎会对Next-Key Lock优化,将其降级为Record Lock,即仅锁住索引本身,不是范围。

下面来看一个辅助索引(非唯一索引)下的锁示例:

CREATE TABLE z ( a INT, b INT, PRIMARY KEY(a), KEY(b) );

INSERT INTO z SELECT 1,1;
INSERT INTO z SELECT 3,1;
INSERT INTO z SELECT 5,3;
INSERT INTO z SELECT 7,6;
INSERT INTO z SELECT 10,8;

表z的列b是辅助索引,若果事务A中执行:

SELECT * FROM z WHERE b=3 FOR UPDATE

由于b列是辅助索引,所以此时会使用Next-Key Locking算法,锁定的范围是(1,3]。特别注意,InnoDB还会对辅助索引的下一个值加上Gap Lock,即还有一个辅助索引范围为(3,6]的锁。因此,若在新事务B中运行以下SQL,都会被阻塞:

1. SELECT * FROM z WHERE a = 5 LOCK IN SHARE MODE;//S锁
2. INSERT INTO z SELECT 4,2;
3. INSERT INTO z SELECT 6,5;

第1个SQL不能执行,因为在事务A中执行的SQL已经对聚集索引中列a=5的值加上X锁,因此执行会被阻塞。

第2个SQL,主键插入4,没有问题,但是插入的辅助索引值2在锁定的范围(1,3]中,因此执行同样会被阻塞。

第3个SQL,插入的主键6没有被锁定,5也不在范围(1,3]之间。但插入的b列值5在另下一个Gap Lock范围(3,6]中,故同样需要等待。

而下面的SQL语句,由于不在Next-Key Lock和Gap Lock范围内,不会被阻塞,可以立即执行:

INSERT INTO z SELECT 8,6;
INSERT INTO z SELECT 2,0;
INSERT INTO z SELECT 6,7;

从上面的例子可以发现,Gap Lock的作用是为了组织多个事务将数据插入到统一范围内,这样会导致幻读问题(Phantom Problem)。例子中事务A已经锁定了b=3的记录。若此时没有Gap Lock锁定(3,6],其他事务就可以插入索引b列为3的记录,这会导致事务A中的用户再次执行同样查询会返回不同的记录,即导致幻读问题的产生。

用户也可以通过以下两种方式来显示的关闭Gap Lock(但不推荐):

  • 将事务的隔离级别设置为READ COMMITED

  • 将参数innodb_locks_unsafe_for_binlog设置为1

在InnoDB中,对于Insert的操作,会检查插入记录的下一条记录是否被锁定,若已经被锁定,则不允许插入。对于上面的例子,事务A已经锁定了表z中b=3的记录,即已经锁定了(1,3]的范围,这时若在其他事务中执行如下插入也会导致阻塞:

INSERT INTO z SELECT 2,0

因为在辅助索引列b上插入值为2的记录时,会监测到下一个记录3已经被索引,修改b列值后,就可以执行了

INSERT INTO z SELECT 2,0

幻读(Phantom Problem)

幻读是指在同一事务下,连续执行两次同样的SQL语句可能会导致不同的结果,第二次的SQL可能会返回之前不存在的行。

在默认的事务隔离级别(REPEATABLE READ)下,InnoDB存储引擎采用Next—Key Locking机制来避免幻读问题。

复(联)合主键与锁

上面的锁机制介绍(摘自《Mysql技术内幕 InnoDB存储引擎 第2版》),只是针对辅助索引和聚集索引,那么复合主键下行锁的表现形式又是怎么样呢?从书上并没有找到答案,实际来测试一下。

首先创建一个复合主键的表

CREATE TABLE `composite_primary_lock_test` (
 `id1` int(255) NOT NULL,
 `id2` int(255) NOT NULL,
 PRIMARY KEY (`id1`,`id2`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (10, 10);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (1, 8);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (3, 6);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (5, 6);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (3, 3);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (1, 1);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (5, 1);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (7, 1);

事务A先来查询id2=6的列,并添加行锁

select * from composite_primary_lock_test where id2 = 6 lock in share mode

此时的锁会降级到Record Lock吗?事务B Update一条Next-Key Lock范围内的数据(id1=1,id2=8)证明一下:

UPDATE `composite_primary_lock_test` SE WHERE `id1` = 1 AND `id2` = 8;

结果是UPDATE被阻塞了,那么再来试试加锁时在where中把两个主键都带上:

select * from composite_primary_lock_test where id2 = 6 and id1 = 5 lock in share mode

执行UPDATE

UPDATE `composite_primary_lock_test` SE WHERE `id1` = 1 AND `id2` = 8;

结果是UPDATE没有被阻塞

上面加锁的id2=6的数据,不只1条,那么再试试对唯一的数据id2=8,只根据一个主键加锁呢,会不会降级为行级锁:

select * from composite_primary_lock_test where id2 = 8 lock in share mode;
UPDATE `composite_primary_lock_test` SE WHERE `id1` = 12 AND `id2` = 10;

结果也是被阻塞了,实验证明:

复合主键下,如果加锁时不带上所有主键,InnoDB会使用Next-Key Locking算法,如果带上所有主键,才会当作唯一索引处理,降级为Record Lock,只锁当前记录。

多列索引(联合索引)与锁

上面只验证了复合主键下的锁机制,那么多列索引呢,会不会和复合索引机制相同?多列unique索引呢?

新建一个测试表,并初始化数据

CREATE TABLE `multiple_idx_lock_test` (
 `id` int(255) NOT NULL,
 `idx1` int(255) NOT NULL,
 `idx2` int(255) DEFAULT NULL,
 PRIMARY KEY (`id`,`idx1`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

ALTER TABLE `multiple_idx_lock_test` 
ADD UNIQUE INDEX `idx_multi`(`idx1`, `idx2`) USING BTREE;

INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (1, 1, 1);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (5, 2, 2);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (7, 3, 3);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (4, 4, 4);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (2, 4, 5);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (3, 5, 5);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (8, 6, 5);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (6, 6, 6);

事务A查询增加S锁,查询时仅使用idx1列,并遵循最左原则:

select * from multiple_idx_lock_test where idx1 = 6 lock in share mode;

现在插入一条Next-Key Lock范围内的数据:

INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (9, 6, 7);

结果是被阻塞了,再试一遍通过多列索引中所有字段来加锁:

select * from multiple_idx_lock_test where idx1 = 6 and idx2 = 6 lock in share mode;

插入一条Next-Key Lock范围内的数据:

INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (9, 6, 7);

结果是没有被阻塞

由此可见,当使用多列唯一索引时,加锁需要明确要锁定的行(即加锁时使用索引的所有列),InnoDB才会认为该条记录为唯一值,锁才会降级为Record Lock。否则会使用Next-Key Lock算法,锁住范围内的数据。

感谢各位的阅读!关于“当Mysql行锁遇到复合主键与多列索引的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


标题名称:当Mysql行锁遇到复合主键与多列索引的示例分析
网页地址:http://kswsj.cn/article/jededo.html

其他资讯