Python中可迭代对象和迭代器生成器的区别是什么-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

Python中可迭代对象和迭代器生成器的区别是什么

本篇文章给大家分享的是有关Python 中可迭代对象和迭代器生成器的区别是什么,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

创新互联公司专注于绥化企业网站建设,响应式网站建设,商城网站开发。绥化网站建设公司,为绥化等地区提供建站服务。全流程专业公司,专业设计,全程项目跟踪,创新互联公司专业和态度为您提供的服务

Python 中可迭代对象和迭代器生成器的区别是什么

 生成器是一种特殊的迭代器,生成器自动实现了“迭代器协议”(即__iter__和next方法),不需要再手动实现两方法。

首先从字面意思来解释Iterable和Iterator的区别
Iterable:由英文的命名规则知道,后缀是able的意思就是可怎么样的,因此iterable就是可迭代的意思 可迭代对象。
Iterator:由英文的命名规则知道,后缀是or或者er的都是指代名词,所以iterator的意思是迭代器。
这两个概念之间有一个包含与被包含的关系,如果一个对象是迭代器,那么这个对象肯定是可迭代的;但是反过来,如果一个对象是可迭代的,那么这个对象不一定是迭代器。
下面我们来具体了解下可迭代对象和迭代器:
可迭代
如果给定一个list或者tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称之为迭代,在python中,迭代是通过for……in来完成的,它不仅可以用在list或tuple上,还可以用在其他可迭代对象上,那么我们怎么知道一个对象是否可迭代呢?方法是通过collections模块的 Iterable类型判断:

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False


可以直接作用于for循环的对象统称为可迭代对象,一共有两类,一类是我们平时常用的python数据类型,如list,tuple,dict,set都是可迭代对象,字符串也是可迭代对象,但是整数就不是可迭代对象;另一类是generator(下面会给出简单讲解)
迭代器:
对于列表这种数据结构,里面的每一个元素我们都要在内存中为之开辟一个空间,不管你以后是否能用到它,如果要创建一个包含100万个元素的列表,但是只会用到其中几个元素,那么这样显然就很浪费内存,所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在python中这种一边循环一边计算的机制,称为生成器:generator。
要创建一个一个generator,有很多种方法,最简单的方法就是直接把一个列表生成器的[]改成()

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
 at 0x1022ef630>


可以看到创建的列表是将所有的元素都输出出来,而生成器只是生成一个对象,如果使用其中的元素,可以通过生成器的next来调用

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "", line 1, in 
StopIteration

next方法太费劲,也可以通过for循环

>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
... 
0
1
4
9
16
25
36
49
64
81


以上是为后面要说的迭代器做铺垫,下面是重点
生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False


生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True


为什么list、dict、str等数据类型不是Iterator?
这时 因为python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前直到序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,如全体自然数,而列表是永远不可能存储全体自然数的。
总结:
凡是可作用于for循环的对象都是Iterable类型,可迭代对象;
凡是可用作next()函数的对象都是Iterator类型,它表示一个惰性计算的序列。
集合数据类型如list,dict,str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象

生成器的创建:1.使用 for 循环的生成器推导式。2.调用带 yield 语句的生成器函数

迭代器生辰器异同

一.迭代器

通过iter()方法获得了list的迭代器对象,然后就可以通过next()方法来访问list中的元素了。当容器中没有可访问的元素后,next()方法将会抛出一个StopIteration异常终止迭代器。

二.生成器

如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)

以上就是Python 中可迭代对象和迭代器生成器的区别是什么,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。


网页名称:Python中可迭代对象和迭代器生成器的区别是什么
URL分享:http://kswsj.cn/article/jhhhpo.html

其他资讯