红黑树:首先是一棵二叉搜索树,它在每个节点上增加了一个存储位来表示节点的颜色,可以是Red或Black。通过对任何一条从根到叶子简单路径上的颜色来约束,红黑树保证最长路径不超过最短路径的两倍,因而近似于平衡。
网站的建设成都创新互联公司专注网站定制,经验丰富,不做模板,主营网站定制开发.小程序定制开发,H5页面制作!给你焕然一新的设计体验!已为成都餐厅设计等企业提供专业服务。
红黑树满足的性质:
根节点是黑色的
如果一个节点是红色的,则它的两个子节点是黑色的(没有连续的红节点)
每条路径的黑色节点的数量相等
红黑树保证最长路径不超过最短路径的两倍,如下图所示
插入节点时的三种情况
cur为红,p为红,g为黑,u存在且为红
cur为红,p为红,g为黑,u不存在/u为黑,p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红
cur为红,p为红,g为黑,u不存在/u为黑,p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
#pragma once #includeusing namespace std; enum Color { RED, BALCK }; template struct RBTreeNode { RBTreeNode * _left; RBTreeNode * _right; RBTreeNode * _parent; K _key; V _value; Color _col; RBTreeNode(const K& key, const V& value) :_left(NULL) , _right(NULL) , _parent(NULL) , _key(key) , _value(value) , _col(RED) {} }; template class RBTree { typedef RBTreeNode Node; public: RBTree() :_root(NULL) {} Node* Find(const K& key) { if (_root == NULL) return NULL; Node* cur = _root; while (cur) { if (cur->_key == key) return cur; else if (cur->_key < key) cur = cur->_right; else cur = cur->_left; } return NULL; } bool Insert(const K& key, const V& value) { if (_root == NULL) { _root = new Node(key, value); _root->_col = BALCK; return true; } Node* cur = _root; Node* parent = NULL; while (cur) { if (cur->_key < key) { parent = cur; cur = cur->_right; } else if (cur->_key>key) { parent = cur; cur = cur->_left; } else { cout << "该节点已存在" << endl; return false; } } cur = new Node(key, value); if (parent->_key > key) { parent->_left = cur; } else { parent->_right = cur; } cur->_parent = parent; //调整节点颜色 while (cur != _root&&parent->_col == RED) {//规定根节点必须为黑色,若parent的颜色为红色,则它一定不为根节点,它的父节点也一定存在 Node* ppNode = parent->_parent;//不用判空 Node* uncle = NULL; if (parent == ppNode->_left) {//parent为它的父节点的左孩子,则叔节点若存在,肯定在右边 uncle = ppNode->_right; if (uncle&&uncle->_col == RED) {//1.cur为红,parent为红,ppNode为黑,u存在且为红 parent->_col = uncle->_col = BALCK; ppNode->_col = RED; cur = ppNode; ppNode = cur->_parent; } else {//2.cur为红,parent为红,uncle不存在或者为黑 if (cur == parent->_right) { RotateL(parent); swap(cur, parent); } parent->_col = BALCK; ppNode->_col = RED; RotateR(ppNode); } } else {//另一边 uncle = ppNode->_left; if (uncle&&uncle->_col == RED) {//1.cur为红,parent为红,ppNode为黑,u存在且为红 parent->_col = uncle->_col = BALCK; ppNode->_col = RED; cur = ppNode; ppNode = cur->_parent; } else { if (cur == parent->_left) { RotateR(parent); swap(cur, parent); } parent->_col = BALCK; ppNode->_col = RED; RotateL(ppNode); } } } } void RotateR(Node* parent) { Node* subL = parent->_left; Node* subLR = subL->_right; parent->_left = subLR; if (subLR) { subLR->_parent = parent; } Node* ppNode = parent->_parent; subL->_right = parent; if (parent == _root || ppNode == NULL)//若要调整的节点为根节点 { _root = subL; subL->_parent = NULL; } else { if (parent == ppNode->_left) { ppNode->_left = subL; } else { ppNode->_right = subL; } subL->_parent = ppNode; } } void RotateL(Node* parent) { Node* subR = parent->_right; Node* subRL = subR->_left; parent->_right = subRL; if (subRL) { subRL->_parent = parent; } Node* ppNode = parent->_parent; subR->_left = parent; if (parent == _root || ppNode == NULL)//若要调整的节点为根节点 { _root = subR; subR->_parent = NULL; } else { if (parent == ppNode->_left) { ppNode->_left = subR; } else { ppNode->_right = subR; } subR->_parent = ppNode; } } bool IsBalance() { int BlackNodeCount = 0; Node* cur = _root; while (cur) { if (cur->_col == BALCK) { BlackNodeCount++; } cur = cur->_left; } int count = 0; return _IsBalance(_root, BlackNodeCount, count); } void InOrder() { _InOrder(_root); cout << endl; } ~RBTree() {} protected: bool _IsBalance(Node* root, const int BlackNodeCount, int count) { if (root == NULL) return false; if (root->_parent) { if (root->_col == RED && root->_parent->_col == RED) { cout << "不能有两个连续的红节点" << endl; return false; } } if (root->_col == BALCK) ++count; if (root->_left == NULL&&root->_right == NULL&&count != BlackNodeCount) { cout << "该条路径上黑色节点数目与其它不相等" << endl; return false; } return _IsBalance(root->_left, BlackNodeCount,count) && _IsBalance(root->_right, BlackNodeCount,count); } void _InOrder(Node* root) { if (root == NULL) return; _InOrder(root->_left); cout << root->_key << " "; _InOrder(root->_right); } protected: Node* _root; }; void Test() { RBTree bt; int arr[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 }; for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); ++i) { bt.Insert(arr[i], i); } bt.IsBalance(); bt.InOrder(); cout << bt.Find(6) << endl;; cout< 红黑树与AVL树的异同:
红黑树和AVL树都是高效的平衡二叉树,增删查改的时间复杂度都是O(lg(N))
红黑树的不追求完全平衡,保证最长路径不超过最短路径的2倍,相对而言,降低了旋转的要求,所以性能跟AVL树差不多,但是红黑树实现更简单,所以实际运用中红黑树更多。
红黑树的应用:
STL库中的map、set
多路复用epoll模式在linux内核的实现
JAVA的TreeMap实现
网站名称:红黑树的插入及查找
网页链接:http://kswsj.cn/article/jhihid.html