怎么在springboot中对shardingjdbc进行配置-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

怎么在springboot中对shardingjdbc进行配置

本篇文章给大家分享的是有关怎么在spring boot中对sharding jdbc进行配置,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

创新互联建站专业为企业提供蓬溪网站建设、蓬溪做网站、蓬溪网站设计、蓬溪网站制作等企业网站建设、网页设计与制作、蓬溪企业网站模板建站服务,十多年蓬溪做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

要排除DataSourceAutoConfiguration,否则多数据源无法配置

@SpringBootApplication
@EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})
public class Application {

  public static void main(String[] args) {
   SpringApplication.run(Application.class, args);
  }
 
}

配置的多个数据源交给sharding-jdbc管理,sharding-jdbc创建一个DataSource数据源提供给mybatis使用

官方文档:http://shardingjdbc.io/index_zh.html

步骤

配置多个数据源,数据源的名称最好要有一定的规则,方便配置分库的计算规则

@Bean(initMethod="init", destroyMethod="close", name="dataSource0")
@ConfigurationProperties(prefix = "spring.datasource")
public DataSource dataSource0(){
  return new DruidDataSource();
}

@Bean(initMethod="init", destroyMethod="close", name="dataSource1")
@ConfigurationProperties(prefix = "spring.datasource2")
public DataSource dataSource1(){
  return new DruidDataSource();
}

配置数据源规则,即将多个数据源交给sharding-jdbc管理,并且可以设置默认的数据源,当表没有配置分库规则时会使用默认的数据源

@Bean
public DataSourceRule dataSourceRule(@Qualifier("dataSource0") DataSource dataSource0, 
    @Qualifier("dataSource1") DataSource dataSource1){
  Map dataSourceMap = new HashMap<>();
  dataSourceMap.put("dataSource0", dataSource0);
  dataSourceMap.put("dataSource1", dataSource1);
  return new DataSourceRule(dataSourceMap, "dataSource0");
}

配置数据源策略和表策略,具体策略需要自己实现

@Bean
public ShardingRule shardingRule(DataSourceRule dataSourceRule){
  //表策略
  TableRule orderTableRule = TableRule.builder("t_order")
      .actualTables(Arrays.asList("t_order_0", "t_order_1"))
      .tableShardingStrategy(new TableShardingStrategy("order_id", new ModuloTableShardingAlgorithm()))
      .dataSourceRule(dataSourceRule)
      .build();
  TableRule orderItemTableRule = TableRule.builder("t_order_item")
      .actualTables(Arrays.asList("t_order_item_0", "t_order_item_1"))
      .tableShardingStrategy(new TableShardingStrategy("order_id", new ModuloTableShardingAlgorithm()))
      .dataSourceRule(dataSourceRule)
      .build();
  //绑定表策略,在查询时会使用主表策略计算路由的数据源,因此需要约定绑定表策略的表的规则需要一致,可以一定程度提高效率
  List bindingTableRules = new ArrayList();
  bindingTableRules.add(new BindingTableRule(Arrays.asList(orderTableRule, orderItemTableRule)));
  return ShardingRule.builder()
      .dataSourceRule(dataSourceRule)
      .tableRules(Arrays.asList(orderTableRule, orderItemTableRule))
      .bindingTableRules(bindingTableRules)
      .databaseShardingStrategy(new DatabaseShardingStrategy("user_id", new ModuloDatabaseShardingAlgorithm()))
      .tableShardingStrategy(new TableShardingStrategy("order_id", new ModuloTableShardingAlgorithm()))
      .build();
}

创建sharding-jdbc的数据源DataSource,MybatisAutoConfiguration会使用此数据源

@Bean("dataSource")
public DataSource shardingDataSource(ShardingRule shardingRule){
  return ShardingDataSourceFactory.createDataSource(shardingRule);
}

需要手动配置事务管理器(原因未知)

//需要手动声明配置事务
@Bean
public DataSourceTransactionManager transactitonManager(@Qualifier("dataSource") DataSource dataSource){
  return new DataSourceTransactionManager(dataSource);
}

分库策略的简单实现,接口:DatabaseShardingAlgorithm

import java.util.Collection;
import java.util.LinkedHashSet;

import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.database.SingleKeyDatabaseShardingAlgorithm;
import com.google.common.collect.Range;

/**
 * Created by fuwei.deng on 2017年5月11日.
 */
public class ModuloDatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm {

  @Override
  public String doEqualSharding(Collection databaseNames, ShardingValue shardingValue) {
   for (String each : databaseNames) {
      if (each.endsWith(shardingValue.getValue() % 2 + "")) {
        return each;
      }
    }
    throw new IllegalArgumentException();
  }
  
  @Override
  public Collection doInSharding(Collection databaseNames, ShardingValue shardingValue) {
   Collection result = new LinkedHashSet<>(databaseNames.size());
    for (Long value : shardingValue.getValues()) {
      for (String tableName : databaseNames) {
        if (tableName.endsWith(value % 2 + "")) {
          result.add(tableName);
        }
      }
    }
    return result;
  }
  
  @Override
  public Collection doBetweenSharding(Collection databaseNames, ShardingValue shardingValue) {
   Collection result = new LinkedHashSet<>(databaseNames.size());
    Range range = (Range) shardingValue.getValueRange();
    for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
      for (String each : databaseNames) {
        if (each.endsWith(i % 2 + "")) {
          result.add(each);
        }
      }
    }
    return result;
  }

}

分表策略的基本实现,接口:TableShardingAlgorithm

import java.util.Collection;
import java.util.LinkedHashSet;

import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.SingleKeyTableShardingAlgorithm;
import com.google.common.collect.Range;

/**
 * Created by fuwei.deng on 2017年5月11日.
 */
public class ModuloTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm {

  @Override
  public String doEqualSharding(Collection tableNames, ShardingValue shardingValue) {
   for (String each : tableNames) {
      if (each.endsWith(shardingValue.getValue() % 2 + "")) {
        return each;
      }
    }
    throw new IllegalArgumentException();
  }
  
  @Override
  public Collection doInSharding(Collection tableNames, ShardingValue shardingValue) {
   Collection result = new LinkedHashSet<>(tableNames.size());
    for (Long value : shardingValue.getValues()) {
      for (String tableName : tableNames) {
        if (tableName.endsWith(value % 2 + "")) {
          result.add(tableName);
        }
      }
    }
    return result;
  }
  
  @Override
  public Collection doBetweenSharding(Collection tableNames, ShardingValue shardingValue) {
   Collection result = new LinkedHashSet<>(tableNames.size());
    Range range = (Range) shardingValue.getValueRange();
    for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
      for (String each : tableNames) {
        if (each.endsWith(i % 2 + "")) {
          result.add(each);
        }
      }
    }
    return result;
  }

}

至此,分库分表的功能已经实现

读写分离

读写分离需在创建DataSourceRule之前加一层主从数据源的创建

// 构建读写分离数据源, 读写分离数据源实现了DataSource接口, 可直接当做数据源处理. 
// masterDataSource0, slaveDataSource00, slaveDataSource01等为使用DBCP等连接池配置的真实数据源
DataSource masterSlaveDs0 = MasterSlaveDataSourceFactory.createDataSource("ms_0", 
          masterDataSource0, slaveDataSource00, slaveDataSource01);
DataSource masterSlaveDs1 = MasterSlaveDataSourceFactory.createDataSource("ms_1", 
          masterDataSource1, slaveDataSource11, slaveDataSource11);

// 构建分库分表数据源
Map dataSourceMap = new HashMap<>(2);
dataSourceMap.put("ms_0", masterSlaveDs0);
dataSourceMap.put("ms_1", masterSlaveDs1);

// 通过ShardingDataSourceFactory继续创建ShardingDataSource

强制使用主库时

HintManager hintManager = HintManager.getInstance();
hintManager.setMasterRouteOnly();
// 继续JDBC操作

强制路由

  1. 使用ThreadLocal机制实现,在执行数据库操作之前通过HintManager改变用于计算路由的值

  2. 设置HintManager的时候分库和分表的策略必须同时设置,并且设置后需要路由的表都需要设置用于计算路由的值。比如强制路由后需要操作t_order和t_order_item两个表,那么两个表的分库和分表的策略都需要设置

HintManager hintManager = HintManager.getInstance();
hintManager.addDatabaseShardingValue("t_order", "user_id", 1L);
hintManager.addTableShardingValue("t_order", "order_id", order.getOrderId());
hintManager.addDatabaseShardingValue("t_order_item", "user_id", 1L);
hintManager.addTableShardingValue("t_order_item", "order_id", order.getOrderId());

事务

  1. sharding-jdbc-transaction实现柔性事务(默认提供了基于内存的事务日志存储器和内嵌异步作业),可结合elastic-job(sharding-jdbc-transaction-async-job)实现异步柔性事务

  2. 没有与spring结合使用的方式,需要自己封装

以上就是怎么在spring boot中对sharding jdbc进行配置,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。


网站栏目:怎么在springboot中对shardingjdbc进行配置
分享路径:http://kswsj.cn/article/jispgi.html

其他资讯