这篇文章主要介绍“simhash的文本去重原理是什么”,在日常操作中,相信很多人在simhash的文本去重原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”simhash的文本去重原理是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
10年的池州网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整池州建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联公司从事“池州网站设计”,“池州网站推广”以来,每个客户项目都认真落实执行。
互联网网页存在大量的内容重复的网页,文本,无论对于搜索引擎,爬虫的网页去重和过滤、新闻小说等内容网站的内容反盗版和追踪,还是社交媒体等文本去重和聚类,都需要对网页或者文本进行去重和过滤。为此必须有一套高效的去重算法,要不然爬虫将做非常多的无用功,时效性等都无法得到保证,更重要的是用户体验也不好。业界关于文本指纹去重的算法众多,如 k-shingle 算法、google 提出的simhash 算法、Minhash 算法、百度top k 最长句子签名算法等等,下面介绍下simhash算法以及python应用。
simhash 是 google 用来处理海量文本去重的算法。 simhash 可以将一个文档转换成一个 64 位的字节,暂且称之为特征字。判断文档是否重复,只需要判断文档特征字之间的汉明距离。根据经验,一般当两个文档特征字之间的汉明距离小于 3, 就可以判定两个文档相似。
传统的Hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上仅相当于伪随机数产生算法。传统的hash算法产生的两个签名,如果原始内容在一定概率下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别很大。所以传统的Hash是无法在签名的维度上来衡量原内容的相似度,而simHash本身属于一种局部敏感哈希算法,它产生的hash签名在一定程度上可以表征原内容的相似度。
我们主要解决的是文本相似度计算,要比较的是两个文章是否相识,当然我们降维生成了hash签名也是用于这个目的。看到这里估计大家就明白了,我们使用的simhash就算把文章中的字符串变成 01 串也还是可以用于计算相似度的,而传统的hash却不行。我们可以来做个测试,两个相差只有一个字符的文本串,“你妈妈喊你回家吃饭哦” 和 “你妈妈叫你回家吃饭啦”。
通过simhash计算结果为:
1000010010101101111111100000101011010001001111100001001011001011
1000010010101101011111100000101011010001001111100001101010001011
通过传统hash计算为:
0001000001100110100111011011110
1010010001111111110010110011101
大家可以看得出来,相似的文本只有部分 01 串变化了,而普通的hash却不能做到,这个就是局部敏感哈希的魅力。
在新拿到文本之后需要先进行分词,这是因为需要挑出TopN个词来表征这篇文本,并且分词的权重不一样,可以使用相应数据集的tf-idf值作为分词的权重,这样就分成了带权重的分词结果。
之后对所有分词进行哈希运算获取二值化的hash结果,再将权重与哈希值相乘,获得带权重的哈希值,最后进行累加以及二值化处理。
使用分词手段将文本分割成关键词的特征向量,分词方法有很多一般都是实词,也就是把停用词等都去掉之后的部分,使用者可以根据自己的需求选择.最后形成去掉噪音词的单词序列并为每个词加上权重. 例如:
行者AI 专注 于 游戏 领域 多年 AI技术 积淀 一站式 提供 文本 图片 音视频 内容 审核 游戏AI 以及 数据 平台 服务
目前的词只是进行了分割,但是词与词含有的信息量是不一样的,比如行者AI 游戏 审核
这三个词就比 专注 服务 以及
更能表达文本的主旨含义,这也就是所谓信息熵的概念。
为此我们还需要设定特征词的权重,简单一点的可以使用绝对词频来表示,也就是某个关键词出现的次数,但是事实上出现次数少的所含有的信息量可能更多.总之需要选择一种加权方法,否则效果会打折扣。
前面我们使用分词方法和权重分配将文本就分割成若干个带权重的实词,比如权重使用1-5的数字表示,1最低5最高。
行者AI(5) 专注(2) 于(1) 游戏(3) 领域(1) 多年(1) AI技术(4) 积淀(1) 一站式(2) 提供(1) 文本(2) 图片(2) 音视频(2) 内容(1) 审核(2) 游戏AI(4) 以及(1) 数据(3) 平台(1) 服务(2)
对各个特征词进行二值化哈希值计算, 再将所有的哈希值累加,最后将累加结果二值化。
在信息论中,两个等长字符串之间的汉明距离(英语:Hamming distance)是两个字符串对应位置的不同字符的个数。换句话说,它就是将一个字符串变换成另外一个字符串所需要替换的字符个数。
汉明重量是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是1的个数,所以11101的汉明重量是4。
对于二进制字符串a与b来说,它等于a 异或b后所得二进制字符串中“1”的个数。
汉明距离是以理查德·卫斯里·汉明的名字命名的,汉明在误差检测与校正码的基础性论文中首次引入这个概念。
在通信中累计定长二进制字中发生翻转的错误数据位,所以它也被称为信号距离。汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。但是,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离等算法。
谷歌经过工程验证认为当两个64bit的二值化simhash值的汉明距离超过3则认为不相似,所以判重问题就转换为求两个哈希值的汉明距离问题。
pip 源中有数种 simhash 的实现,simhash,使用起来十分方便,直接使用 pip 就可以安装
pip install simhash
使用例子
from simhash import Simhash def simhash_demo(text1, text2): """ 求两文本的相似度 :param text1: :param text2: :return: """ a_simhash = Simhash(text1) b_simhash = Simhash(text2) max_hashbit = max(len(bin(a_simhash.value)), (len(bin(b_simhash.value)))) # 汉明距离 distince = a_simhash.distance(b_simhash) print(distince) similar = 1 - distince / max_hashbit return similar if __name__ == '__main__': text1 = "行者AI专注于游戏领域,多年的AI技术积淀,一站式提供文本、图片、音/视频内容审核,游戏AI以及数据平台服务" text2 = "行者AI专注于游戏领域,多年的AI技术积淀,二站式提供文本、图片、音 视频内容审核,游戏AI以及数据平台服务" similar = simhash_demo(text1, text2) print(similar)
到此,关于“simhash的文本去重原理是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!