11.sparksql之RDD转换DataSet-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

11.sparksql之RDD转换DataSet

简介

  Spark SQL提供了两种方式用于将RDD转换为Dataset。

创新互联建站专注于阳信企业网站建设,响应式网站开发,商城网站建设。阳信网站建设公司,为阳信等地区提供建站服务。全流程按需策划设计,专业设计,全程项目跟踪,创新互联建站专业和态度为您提供的服务

  • 使用反射机制推断RDD的数据结构

  当spark应用可以推断RDD数据结构时,可使用这种方式。这种基于反射的方法可以使代码更简洁有效。

  • 通过编程接口构造一个数据结构,然后映射到RDD上

  当spark应用无法推断RDD数据结构时,可使用这种方式。

反射方式

  • scala
// For implicit conversions from RDDs to DataFrames
import spark.implicits._

// Create an RDD of Person objects from a text file, convert it to a Dataframe
val peopleDF = spark.sparkContext
  .textFile("examples/src/main/resources/people.txt")
  .map(_.split(","))
  .map(attributes => Person(attributes(0), attributes(1).trim.toInt))
  .toDF()
// Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people")

// SQL statements can be run by using the sql methods provided by Spark
val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19")

// The columns of a row in the result can be accessed by field index
teenagersDF.map(teenager => "Name: " + teenager(0)).show()
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+

// or by field name
teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+

// No pre-defined encoders for Dataset[Map[K,V]], define explicitly
implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
// Primitive types and case classes can be also defined as
// implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()

// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect()
// Array(Map("name" -> "Justin", "age" -> 19))
  • java
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders;

// Create an RDD of Person objects from a text file
JavaRDD peopleRDD = spark.read()
  .textFile("examples/src/main/resources/people.txt")
  .javaRDD()
  .map(line -> {
    String[] parts = line.split(",");
    Person person = new Person();
    person.setName(parts[0]);
    person.setAge(Integer.parseInt(parts[1].trim()));
    return person;
  });

// Apply a schema to an RDD of JavaBeans to get a DataFrame
Dataset peopleDF = spark.createDataFrame(peopleRDD, Person.class);
// Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people");

// SQL statements can be run by using the sql methods provided by spark
Dataset teenagersDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19");

// The columns of a row in the result can be accessed by field index
Encoder stringEncoder = Encoders.STRING();
Dataset teenagerNamesByIndexDF = teenagersDF.map(
    (MapFunction) row -> "Name: " + row.getString(0),
    stringEncoder);
teenagerNamesByIndexDF.show();
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+

// or by field name
Dataset teenagerNamesByFieldDF = teenagersDF.map(
    (MapFunction) row -> "Name: " + row.getAs("name"),
    stringEncoder);
teenagerNamesByFieldDF.show();
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+
  • python
from pyspark.sql import Row

sc = spark.sparkContext

# Load a text file and convert each line to a Row.
lines = sc.textFile("examples/src/main/resources/people.txt")
parts = lines.map(lambda l: l.split(","))
people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))

# Infer the schema, and register the DataFrame as a table.
schemaPeople = spark.createDataFrame(people)
schemaPeople.createOrReplaceTempView("people")

# SQL can be run over DataFrames that have been registered as a table.
teenagers = spark.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")

# The results of SQL queries are Dataframe objects.
# rdd returns the content as an :class:`pyspark.RDD` of :class:`Row`.
teenNames = teenagers.rdd.map(lambda p: "Name: " + p.name).collect()
for name in teenNames:
    print(name)
# Name: Justin

编程方式

  • scala
import org.apache.spark.sql.types._

// Create an RDD
val peopleRDD = spark.sparkContext.textFile("examples/src/main/resources/people.txt")

// The schema is encoded in a string
val schemaString = "name age"

// Generate the schema based on the string of schema
val fields = schemaString.split(" ")
  .map(fieldName => StructField(fieldName, StringType, nullable = true))
val schema = StructType(fields)

// Convert records of the RDD (people) to Rows
val rowRDD = peopleRDD
  .map(_.split(","))
  .map(attributes => Row(attributes(0), attributes(1).trim))

// Apply the schema to the RDD
val peopleDF = spark.createDataFrame(rowRDD, schema)

// Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")

// SQL can be run over a temporary view created using DataFrames
val results = spark.sql("SELECT name FROM people")

// The results of SQL queries are DataFrames and support all the normal RDD operations
// The columns of a row in the result can be accessed by field index or by field name
results.map(attributes => "Name: " + attributes(0)).show()
// +-------------+
// |        value|
// +-------------+
// |Name: Michael|
// |   Name: Andy|
// | Name: Justin|
// +-------------+
  • java
import java.util.ArrayList;
import java.util.List;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;

import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;

import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

// Create an RDD
JavaRDD peopleRDD = spark.sparkContext()
  .textFile("examples/src/main/resources/people.txt", 1)
  .toJavaRDD();

// The schema is encoded in a string
String schemaString = "name age";

// Generate the schema based on the string of schema
List fields = new ArrayList<>();
for (String fieldName : schemaString.split(" ")) {
  StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true);
  fields.add(field);
}
StructType schema = DataTypes.createStructType(fields);

// Convert records of the RDD (people) to Rows
JavaRDD rowRDD = peopleRDD.map((Function) record -> {
  String[] attributes = record.split(",");
  return RowFactory.create(attributes[0], attributes[1].trim());
});

// Apply the schema to the RDD
Dataset peopleDataFrame = spark.createDataFrame(rowRDD, schema);

// Creates a temporary view using the DataFrame
peopleDataFrame.createOrReplaceTempView("people");

// SQL can be run over a temporary view created using DataFrames
Dataset results = spark.sql("SELECT name FROM people");

// The results of SQL queries are DataFrames and support all the normal RDD operations
// The columns of a row in the result can be accessed by field index or by field name
Dataset namesDS = results.map(
    (MapFunction) row -> "Name: " + row.getString(0),
    Encoders.STRING());
namesDS.show();
// +-------------+
// |        value|
// +-------------+
// |Name: Michael|
// |   Name: Andy|
// | Name: Justin|
// +-------------+
  • python
# Import data types
from pyspark.sql.types import *

sc = spark.sparkContext

# Load a text file and convert each line to a Row.
lines = sc.textFile("examples/src/main/resources/people.txt")
parts = lines.map(lambda l: l.split(","))
# Each line is converted to a tuple.
people = parts.map(lambda p: (p[0], p[1].strip()))

# The schema is encoded in a string.
schemaString = "name age"

fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
schema = StructType(fields)

# Apply the schema to the RDD.
schemaPeople = spark.createDataFrame(people, schema)

# Creates a temporary view using the DataFrame
schemaPeople.createOrReplaceTempView("people")

# SQL can be run over DataFrames that have been registered as a table.
results = spark.sql("SELECT name FROM people")

results.show()
# +-------+
# |   name|
# +-------+
# |Michael|
# |   Andy|
# | Justin|
# +-------+

忠于技术,热爱分享。欢迎关注公众号:java大数据编程,了解更多技术内容。

11.spark sql之RDD转换DataSet


网页题目:11.sparksql之RDD转换DataSet
本文路径:http://kswsj.cn/article/jssgid.html

其他资讯