2.认识O(logN)的排序-创新互联-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

2.认识O(logN)的排序-创新互联

1. 递归
  • 递归arr[L…R]范围上求大值
    流程分析如下:
    在这里插入图片描述
    java代码:
package paixu.class01;

public class Code08_GetMax {public static void main(String[] args) {int[] arr = {3,2,5,6,7,4};
        System.out.println(getMax(arr));
    }

    public static int getMax(int[] arr) {return process(arr, 0, arr.length - 1);
    }

    //arr[L..R]范围上求大值
    public static int process(int[] arr, int L, int R) {if (L == R){//arr[L..R]范围上只有一个数,直接返回
            return arr[L];
        }
        int mid = L + ((R-L) >>1);
        int leftMax = process(arr, L, mid);
        int rightMax = process(arr, mid + 1, R);
        return Math.max(leftMax, rightMax);
    }
}

在这里插入图片描述

成都创新互联公司-专业网站定制、快速模板网站建设、高性价比武胜网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式武胜网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖武胜地区。费用合理售后完善,十载实体公司更值得信赖。2. Master公式

Master公式用来计算子问题规模确定的递归函数的时间复杂度。

master公式的使用
T(N) = a*T(N/b) + O(N^d)

  1. log(b,a) >d ->复杂度为O(N^log(b,a))
  2. log(b,a) = d ->复杂度为O(N^d * logN)
  3. log(b,a)< d ->复杂度为O(N^d)

说明:
T(N):母问题的规模
T(N/b): 子问题的规模
a: 子问题调用次数
O(N^d):除了子问题之外,其他逻辑的时间复杂度

例子: 上面递归求arr[L…R]范围上大值。满足master公式。
T(N) = 2*T(N/2) + O(N^0)

3. 归并排序

归并排序是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
归并排序时间复杂度O(N*logN),额外空间复杂度O(N),稳定排序
归并操作,也叫归并算法,指的是将两个顺序序列合并成一个顺序序列的方法。归并排序的流程图如下:
在这里插入图片描述
在看归并排序时,我们首先要能够归并两个有序数组,换句话说就是合并两个有序数组为一个有序数组。
例如归并以下两个数组。素材来源 https://blog.csdn.net/weixin_50941083/article/details/120852477

a[5] = {3,5,7,8,10}
b[7] = {1,2,4,5,8,11,1}

主要思想:

  1. 定义一个新数组c,可以容纳a和b两个数组中的所有元素;
  2. 初始化三个下标(都指向第一个元素),i给a数组,j给b数组,k是新数组c的;
  3. a[i]和b[j]进行比较:若a[i]b[j],将b[j]填入c[k],j++,k++;
  4. 循环第三步,直至其中一个数组中的数据全部填入数组c中,再将另外一个还有剩余的数组中的元素放入新数组c中。

图解过程如下:
在这里插入图片描述
java代码:

package paixu.class02;

import java.util.Arrays;

public class Code01_MergeSort_ {public static void main(String[] args) {int[] arr = {10,4,6,3,8,2,5,7};
        mergeSort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void mergeSort(int[] arr) {if (arr == null || arr.length< 2) {return;
        }
        process(arr, 0, arr.length - 1);
    }

    public static void merge(int[] arr, int l, int m, int r) {int[] tempArr = new int[r - l + 1];
        int i = l;
        int j = m + 1;
        int k = 0;
        while (i<= m && j<= r) {if (arr[i]<= arr[j]) {tempArr[k++] = arr[i++];
            }else{tempArr[k++] = arr[j++];
            }
        }
        while (i<= m) {tempArr[k++] = arr[i++];
        }
        while (j<= r) {tempArr[k++] = arr[j++];
        }

        //把临时保存数组数据拷贝到原数组
        for (int e = 0; e< tempArr.length; e++) {arr[l++] = tempArr[e];
        }
    }

    public static void process(int[] arr, int L, int R) {if (L == R) {return;
        }
        int mid = L + ((R - L) >>1);
        process(arr, L, mid);
        process(arr, mid + 1, R);
        merge(arr, L, mid, R);
    }
}

在这里插入图片描述
master公式分析归并排序:
merge()的时间复杂度为O(N)
T(N) = 2T(N/2) + O(N) ->a = 2, b = 2, d = 1
log(b,a) = d ->时间复杂度为O(N * logN)

1. 小和问题

参考 https://blog.csdn.net/qq_37236745/article/details/83625679
描述
在一个数组中,每一个数左边比当前数小的数累加起来,叫做这个数组的小和。求一个数组的小和。
例子
[1,3,4,2,5]
1左边比1小的数:没有
3左边比3小的数:1
4左边比4小的数:1,3
2左边比2小的数:1
5左边比5小的数:1,3,4,2
所以小和为1+1+3+1+1+3+4+2=16
解题思路
如果直接用两层for循环扫,时间复杂度是O(n ^2) ,但是可以通过归并排序的方法将时间复杂度降到O(nlogn)
具体做法:归并排序分两步,一是分,二是治。分好说,不停的将数组划分为两部分,比如样例,最终划分为如下图所示的样子
在这里插入图片描述
分完以后开始治,归并排序的治就是merge的过程,首先对1和3进行merge,在此过程中产生一个小和1;然后将1、3和4进行merge,在此过程中产生小和1、3;然后2和5进行merge,产生小和2;最后将1、3、4和2、5进行一次merge,1比2小,所以一共产生n个1的小和,这个n就是当前右边的数的个数,因为右边有两个数2和5,所以产生2个1的小和,然后将1填入辅助数组,继续比较3和2,2比3小,但是2是右边的数,所以不算小和,然后比较3和5,3比5小,所以产生n个3的小和,因为右侧只有一个数,所以就只产生1个3的小和,同样的,
产生1个4的小和
这道题换个角度来想,题目要求的是每个数左边有哪些数比自己小,其实不就是右边有多少个数比自己大,那么产生的小和就是当前值乘以多少个吗?还是以上面的样例举例,1右边有4个比1大的数,所以产生小和14;3右边有2个比3大的数,所以产生小和32;4右边有一个比4大的数,所以产生小和41;2右边没有比2大的数,所以产生小和为20;5右边也没有比5大的数,所以产生小和5*0

java代码:

package paixu.class02;


public class Code02_SmallSum {public static void main(String[] args) {int[] arr = {1,3,4,2,5};
        System.out.println(getSmallSum(arr));
    }
    public static int getSmallSum(int[] arr) {if (arr == null || arr.length<= 1) {return 0;
        }
        return process(arr, 0, arr.length - 1);
    }
    public static int merge(int[] arr, int l, int m, int r) {int res = 0;
        int[] tempArr = new int[r - l + 1];
        int i = l;
        int j = m + 1;
        int k = 0;
        while (i<= m && j<= r) {if (arr[i]< arr[j]) {res += arr[i] * (r - j + 1);
                tempArr[k++] = arr[i++];
            }else{tempArr[k++] = arr[j++];
            }
        }
        while (i<= m) {tempArr[k++] = arr[i++];
        }
        while (j<= r) {tempArr[k++] = arr[j++];
        }
        //临时数组拷贝到原数组
        for (int e = 0; e< tempArr.length; e++) {arr[l++] = tempArr[e];
        }
        return res;
    }

    public static int process(int[] arr, int L, int R) {if (L == R) {return 0;
        }
        int mid = L + ((R - L) >>1);
        return process(arr, L, mid) + process(arr, mid + 1, R) + merge(arr, L, mid, R);
    }
}

在这里插入图片描述

2. 逆序对
  • 什么是逆序对呢?百度百科这样解释:

设 A 为一个有 n 个数字的有序集 (n>1),其中所有数字各不相同。如果存在正整数 i, j 使得 1 ≤ i< j ≤ n 而且 A[i] >A[j],则 这个有序对称为 A 的一个逆序对,也称作逆序数。

  • 在一个数组中,左边的数如果比右边的数大,则这两个数构成一个逆序对,请打印所有逆序对,或者逆序对数量?

分析:
本题其实就是统计数组中右边比左边小的数据对数。用归并排序算法的思想
java代码:

package paixu.class02;

public class Code03_nixudui_ {public static void main(String[] args) {int[] arr = {3,2,4,5,0};
        int res = getNixuNum(arr);
        System.out.println(res);
    }
    public static int getNixuNum(int[] arr) {if (arr == null || arr.length< 1) {return 0;
        }
        return process(arr, 0, arr.length - 1);
    }

    public static int merge(int[] arr, int l, int mid, int r) {int res = 0;
        int i = l;
        int j = mid + 1;
        int k = 0;
        int[] tempArr = new int[r - l + 1];
        while (i<= mid && j<= r) {if (arr[i] >arr[j]) {res += (r - j + 1);
                for (int g = j; g<= r; g++) {System.out.println(arr[i] + " ->" + arr[g]);
                }
                tempArr[k++] = arr[i++];
            }else {tempArr[k++] = arr[j++];
            }
        }
        while (i<= mid) {tempArr[k++] = arr[i++];
        }
        while (j<= r) {tempArr[k++] = arr[j++];
        }
        for (int e = 0; e< tempArr.length; e++) {arr[l++] = tempArr[e];
        }
        return res;
    }

    public static int process(int[] arr, int l, int r) {if (l == r) {return 0;
        }
        int mid = l + ((r - l) >>1);
        int left = process(arr, l, mid);
        int right = process(arr, mid + 1, r);
        int merge = merge(arr, l, mid, r);
        return  left + right + merge;
    }
}

在这里插入图片描述

4. 快速排序

快速排序算法通过多次比较和交换来实现排序,其排序流程如下:

(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于分界值,而右边部分中各元素都大于或等于分界值。
(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

排序步骤
原理:
设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它左边,所有比它大的数都放到它右边,这个过程称为一趟快速排序。值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。

荷兰国旗问题
问题一:给定一个数组arr,和一个数num,请把小于等于num的数放在数组的左边,大于num的数放在数组的右边。要求额外空间复杂度O(1),时间复杂度O(N)
解决方案:
划定一个<=区域 j,初始化为-1,一个指针i 初始化指向arr[0],arr[i]与num比较大小:

  1. arr[i]<= num;arr[i] 和<=区域的下一个数交换,<=区域右扩一个(j++),同时 i++; 2)arr[i]
  2. arr[i] >num; i++;

例子:arr = [3,5,6,7,4,3,5,8], num = 5。整个流程如下:
在这里插入图片描述
java代码:

//在数组arr中,把小于num的数放在数组左边,大于num的数放在右边
    public static void version1(int[] arr, int num) {int leftArea = -1;
        for (int i = 0; i< arr.length; i++) {if (arr[i]<= num) {swap(arr, i, ++leftArea);
            }
        }
        System.out.println(leftArea);
    }

问题二(荷兰国旗问题)
给定一个数组arr,和一个数num,请把小于num的数放在数组的左边,等于num的数放在数组的中间,大于num的数放在数组的 右边。要求额外空间复杂度O(1),时间复杂度O(N)
解决方案:
划定一个<区域 ,初始化为-1,一个>区域,初始化为arr.length(),一个指针i 初始化指向arr[0],arr[i]与num比较大小:

  1. arr[i]< num; arr[i] 和<区域的下一个数交换,<区域右扩一个,同时 i++;
    2)arr[i] == num; i++
  2. arr[i] >num; arr[i] 和 >区域的前一个数交换,>区域左扩一个;

例子:arr = [3,5,6,3,4,5,2,6,9,0], num = 5。整个流程如下:
在这里插入图片描述
java代码:

//在数组arr中,把小于num的数放在数组左边,等于num的数放在中间,大于num的数放在右边
    public static int[] version2(int[] arr, int left, int right) {int leftArea = left -1;
        int rightArea = right + 1;
        int i = left;
        int num = arr[right];
        while (i != rightArea) {if (arr[i]< num) {swap(arr, i++, ++leftArea);
            }
            else if (arr[i] == num) {i++;
            }
            else {swap(arr, i, --rightArea);
            }
        }
        System.out.println("leftArea:" + leftArea + "\trightArea:" + rightArea);
        int[] res = {leftArea, rightArea};
        return res;
    }

随机快速排序(改进的快速排序):

1)在数组范围中,等概率随机选一个数作为划分值,然后把数组通过荷兰国旗问题分成三个部分:左侧<划分值、中间==划分值、右侧>划分值
2)对左侧范围和右侧范围,递归执行
3)时间复杂度为O(N*logN)

快排代码如下:

package paixu;

import java.util.Arrays;

public class Kuaipai {public static void main(String[] args) {int[] arr = {3,5,6,3,4,5,2,6,9,0};
        kuaipai(arr, 0,9);
        System.out.println(Arrays.toString(arr));
    }

    //在数组arr中,把小于num的数放在数组左边,等于num的数放在中间,大于num的数放在右边
    public static int[] version2(int[] arr, int left, int right) {int leftArea = left -1;
        int rightArea = right + 1;
        int i = left;
        int num = arr[right];
        while (i != rightArea) {if (arr[i]< num) {swap(arr, i++, ++leftArea);
            }
            else if (arr[i] == num) {i++;
            }
            else {swap(arr, i, --rightArea);
            }
        }
        System.out.println("leftArea:" + leftArea + "\trightArea:" + rightArea);
        int[] res = {leftArea, rightArea};
        return res;
    }

    public static void kuaipai(int[] arr, int L, int R) {if (L< R) {swap(arr, L + (int)(Math.random() * (R - L - 1)), R);
            int[] p = version2(arr, L, R);
            kuaipai(arr, L, p[0]);
            kuaipai(arr, p[1], R);
        }
    }

    public static void swap(int[] arr, int i, int j) {int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

结果如下:
在这里插入图片描述

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧


网页名称:2.认识O(logN)的排序-创新互联
文章网址:http://kswsj.cn/article/pcheh.html

其他资讯