hadoop如何实现x计数器、分区、序列化-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

hadoop如何实现x计数器、分区、序列化

小编给大家分享一下hadoop如何实现x计数器、分区、序列化,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

公司主营业务:做网站、网站制作、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出黄山区免费做网站回馈大家。

package com.test;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.Counters.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/*
 * 手机号码  流量[类型1、类型2、类型3]
 * 13500001234 12,56,78
 * 18600001235 32,21,80
 * 15800001235 16,33,56
 * 13500001234 19,92,73
 * 18600001235 53,55,29
 * 18600001239 27,77,68
 * 
 * 计算得出
 * 手机号 类型1汇总 类型2汇总 类型3汇总
 */
public class WordCount extends Configured implements Tool {
 
 public static class Map extends Mapper {
  //避免每调用一次map就创建一次对象
  private final Text phoneNum = new Text();
  private final StreamWritable streamWritable = new StreamWritable();
  
  private String firstLine = "#_#";
  private String lastLine;
  
  public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
   String line = value.toString();
   
   //获得map输入的第一条记录
   if("#_#".equals(firstLine)) {
    firstLine = key.toString() + "\t" + line;
   }
   
   //获得map输入的最后一条记录
   lastLine = key.toString() + "\t" + line;
   
   //13500001234手机号码总共在多少行出现【自定义计数器】
   Counter helloCounter = (Counter) context.getCounter("Words", "13500001234");
   if(line.contains("13500001234")) {
    helloCounter.increment(1L);
   }
   
   String[] strs = line.split("\t");
   //手机号码
   phoneNum.set(strs[0]);
   
   //流量
   String[] stream = strs[1].split(",");
   streamWritable.set(Long.parseLong(stream[0]), Long.parseLong(stream[1]), Long.parseLong(stream[2]));
   
   context.write(phoneNum, streamWritable);
  }
  
  protected void cleanup(org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException ,InterruptedException {
   //获得map输入的第一条记录
   System.out.println(firstLine);
   
   //获得map输出的最后一条记录
   System.out.println(lastLine);
  };
 }
 
 public static class Reduce extends Reducer {
  //避免每调用一次reduce就创建一次对象
  private StreamWritable streamWritable = new StreamWritable();
  
  /*
   * map函数执行结束后,map输出的一共有4个,分别是,,
   * 分区,默认只有一个分区  job.setPartitionerClass
   * 排序 ,,
   * 分组 把相同key的value放到一个集合中 ,每一组调用一次reduce函数
   * 归约(可选) job.setCombinerClass
   */
  public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
   long stream1 = 0;
   long stream2 = 0;
   long stream3 = 0;
   
   Iterator it = values.iterator();
   while(it.hasNext()) {
    streamWritable = it.next();
    stream1 = stream1 + streamWritable.getStream1();
    stream2 = stream2 + streamWritable.getStream2();
    stream3 = stream3 + streamWritable.getStream3();
   }
   
   streamWritable.set(stream1, stream2, stream3);
   context.write(key, streamWritable);
  }
 }
 
 public int run(String[] args) throws Exception {
  Configuration conf = this.getConf();
  Job job = new Job(conf);
  job.setJarByClass(WordCount.class);
  job.setJobName(WordCount.class.getSimpleName());
  
  FileInputFormat.addInputPath(job, new Path(args[0]));
  FileOutputFormat.setOutputPath(job, new Path(args[1]));
  
  //如果没有配置,默认值是1
  job.setNumReduceTasks(1);
  
  //指定map产生的数据按照什么规则分配到不同的reduce中,如果没有配置,默认是HashPartitioner.class
  job.setPartitionerClass(MyPartitioner.class);
  
  //FileInputFormat.getSplits决定map任务数量,XxxInputFormat.RecordReader处理每一个split,得到map输入的key、value
  //默认是TextInputFormat
  job.setInputFormatClass(TextInputFormat.class);
  job.setOutputFormatClass(TextOutputFormat.class);
  
  job.setMapperClass(Map.class);
  job.setCombinerClass(Reduce.class);
  job.setReducerClass(Reduce.class);
  
  //当reduce输出类型与map输出类型一致时,map的输出类型可以不设置
  job.setMapOutputKeyClass(Text.class);
  job.setMapOutputValueClass(StreamWritable.class);
  
  //reduce的输出类型一定要设置
  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(StreamWritable.class);
  
  job.waitForCompletion(true);
  
  return job.isSuccessful()?0:1;
 }
 
 public static void main(String[] args) throws Exception {
  int exit = ToolRunner.run(new WordCount(), args);
  System.exit(exit);
 }
 
}
//自定义Partitioner
class MyPartitioner extends Partitioner {
 @Override
 //返回值表示,分配到第几个reduce任务中
 public int getPartition(Text key, StreamWritable value, int numPartitions) {
  //13500001234手机号码分到第1个reduce,其余的分到第二个reduce
  if("13500001234".equals(key.toString())) {
   return 0;
  } else {
   return 1;
  }
 }
}
//自定义序列化类[处理手机流量]
//Serializable:Java序列化的信息非常臃肿,比如存在层层类继承的时候,继承关系序列化出去,还需要序列化回来。
//hadoop的Writable轻量很多
class StreamWritable implements Writable {
 private long stream1;
 
 private long stream2;
 
 private long stream3;
 
 public long getStream1() {
  return stream1;
 }
 public void setStream1(long stream1) {
  this.stream1 = stream1;
 }
 public long getStream2() {
  return stream2;
 }
 public void setStream2(long stream2) {
  this.stream2 = stream2;
 }
 public long getStream3() {
  return stream3;
 }
 public void setStream3(long stream3) {
  this.stream3 = stream3;
 }
 public StreamWritable() {
  
 }
 
 public StreamWritable(long stream1, long stream2, long stream3) {
  this.set(stream1, stream2, stream3);
 }
 
 public void set(long stream1, long stream2, long stream3) {
  this.stream1 = stream1;
  this.stream2 = stream2;
  this.stream3 = stream3;
 }
 
 @Override
 public void write(DataOutput out) throws IOException {
  out.writeLong(stream1);//写出顺序和读入顺序一一对应
  out.writeLong(stream2);
  out.writeLong(stream3);
 }
 @Override
 public void readFields(DataInput in) throws IOException {
  this.stream1 = in.readLong();//写出顺序和读入顺序一一对应
  this.stream2 = in.readLong();
  this.stream3 = in.readLong();
 }
 
 //输出的时候会调用toString方法
 @Override
 public String toString() {
  return this.stream1+"\t"+this.stream2+"\t"+this.stream3;
 }
}

以上是“hadoop如何实现x计数器、分区、序列化”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


网站名称:hadoop如何实现x计数器、分区、序列化
转载来于:http://kswsj.cn/article/pgpeci.html

其他资讯