python函数实用技巧的简单介绍-成都创新互联网站建设

关于创新互联

多方位宣传企业产品与服务 突出企业形象

公司简介 公司的服务 荣誉资质 新闻动态 联系我们

python函数实用技巧的简单介绍

可以让你快速用Python进行数据分析的10个小技巧

一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可以节省时间,还可能挽救“生命”。

创新互联建站企业建站,10余年网站建设经验,专注于网站建设技术,精于网页设计,有多年建站和网站代运营经验,设计师为客户打造网络企业风格,提供周到的建站售前咨询和贴心的售后服务。对于网站设计、成都网站建设中不同领域进行深入了解和探索,创新互联在网站建设中充分了解客户行业的需求,以灵动的思维在网页中充分展现,通过对客户行业精准市场调研,为客户提供的解决方案。

一个小小的快捷方式或附加组件有时真是天赐之物,并且可以成为真正的生产力助推器。所以,这里有一些小提示和小技巧,有些可能是新的,但我相信在下一个数据分析项目中会让你非常方便。

Pandas中数据框数据的Profiling过程

Profiling(分析器)是一个帮助我们理解数据的过程,而Pandas Profiling是一个Python包,它可以简单快速地对Pandas 的数据框数据进行 探索 性数据分析。

Pandas中df.describe()和df.info()函数可以实现EDA过程第一步。但是,它们只提供了对数据非常基本的概述,对于大型数据集没有太大帮助。 而Pandas中的Profiling功能简单通过一行代码就能显示大量信息,且在交互式HTML报告中也是如此。

对于给定的数据集,Pandas中的profiling包计算了以下统计信息:

由Pandas Profiling包计算出的统计信息包括直方图、众数、相关系数、分位数、描述统计量、其他信息——类型、单一变量值、缺失值等。

安装

用pip安装或者用conda安装

pip install pandas-profiling

conda install -c anaconda pandas-profiling

用法

下面代码是用很久以前的泰坦尼克数据集来演示多功能Python分析器的结果。

#importing the necessary packages

import pandas as pd

import pandas_profiling

df = pd.read_csv('titanic/train.csv')

pandas_profiling.ProfileReport(df)

一行代码就能实现在Jupyter Notebook中显示完整的数据分析报告,该报告非常详细,且包含了必要的图表信息。

还可以使用以下代码将报告导出到交互式HTML文件中。

profile = pandas_profiling.ProfileReport(df)

profile.to_file(outputfile="Titanic data profiling.html")

Pandas实现交互式作图

Pandas有一个内置的.plot()函数作为DataFrame类的一部分。但是,使用此功能呈现的可视化不是交互式的,这使得它没那么吸引人。同样,使用pandas.DataFrame.plot()函数绘制图表也不能实现交互。 如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。

Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。

安装

pip install plotly

# Plotly is a pre-requisite before installing cufflinks

pip install cufflinks

用法

#importing Pandas

import pandas as pd

#importing plotly and cufflinks in offline mode

import cufflinks as cf

import plotly.offline

cf.go_offline()

cf.set_config_file(offline=False, world_readable=True)

是时候展示泰坦尼克号数据集的魔力了。

df.iplot()

df.iplot() vs df.plot()

右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。

Magic命令

Magic命令是Jupyter notebook中的一组便捷功能,旨在解决标准数据分析中的一些常见问题。使用命令%lsmagic可以看到所有的可用命令。

所有可用的Magic命令列表

Magic命令有两种:行magic命令(line magics),以单个%字符为前缀,在单行输入操作;单元magic命令(cell magics),以双%%字符为前缀,可以在多行输入操作。如果设置为1,则不用键入%即可调用Magic函数。

接下来看一些在常见数据分析任务中可能用到的命令:

% pastebin

%pastebin将代码上传到Pastebin并返回url。Pastebin是一个在线内容托管服务,可以存储纯文本,如源代码片段,然后通过url可以与其他人共享。事实上,Github gist也类似于pastebin,只是有版本控制。

在file.py文件中写一个包含以下内容的python脚本,并试着运行看看结果。

#file.py

def foo(x):

return x

在Jupyter Notebook中使用%pastebin生成一个pastebin url。

%matplotlib notebook

函数用于在Jupyter notebook中呈现静态matplotlib图。用notebook替换inline,可以轻松获得可缩放和可调整大小的绘图。但记得这个函数要在导入matplotlib库之前调用。

%run

用%run函数在notebook中运行一个python脚本试试。

%run file.py

%%writefile

%% writefile是将单元格内容写入文件中。以下代码将脚本写入名为foo.py的文件并保存在当前目录中。

%%latex

%%latex函数将单元格内容以LaTeX形式呈现。此函数对于在单元格中编写数学公式和方程很有用。

查找并解决错误

交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。 这将打开一个交互式调试环境,它能直接定位到发生异常的位置。还可以检查程序中分配的变量值,并在此处执行操作。退出调试器单击q即可。

Printing也有小技巧

如果您想生成美观的数据结构,pprint是首选。它在打印字典数据或JSON数据时特别有用。接下来看一个使用print和pprint来显示输出的示例。

让你的笔记脱颖而出

我们可以在您的Jupyter notebook中使用警示框/注释框来突出显示重要内容或其他需要突出的内容。注释的颜色取决于指定的警报类型。只需在需要突出显示的单元格中添加以下任一代码或所有代码即可。

蓝色警示框:信息提示

p class="alert alert-block alert-info"

bTip:/b Use blue boxes (alert-info) for tips and notes.

If it’s a note, you don’t have to include the word “Note”.

/p

黄色警示框:警告

p class="alert alert-block alert-warning"

bExample:/b Yellow Boxes are generally used to include additional examples or mathematical formulas.

/p

绿色警示框:成功

p class="alert alert-block alert-success"

Use green box only when necessary like to display links to related content.

/p

红色警示框:高危

p class="alert alert-block alert-danger"

It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.

/p

打印单元格所有代码的输出结果

假如有一个Jupyter Notebook的单元格,其中包含以下代码行:

In [1]: 10+5

11+6

Out [1]: 17

单元格的正常属性是只打印最后一个输出,而对于其他输出,我们需要添加print()函数。然而通过在notebook顶部添加以下代码段可以一次打印所有输出。

添加代码后所有的输出结果就会一个接一个地打印出来。

In [1]: 10+5

11+6

12+7

Out [1]: 15

Out [1]: 17

Out [1]: 19

恢复原始设置:

InteractiveShell.ast_node_interactivity = "last_expr"

使用'i'选项运行python脚本

从命令行运行python脚本的典型方法是:python hello.py。但是,如果在运行相同的脚本时添加-i,例如python -i hello.py,就能提供更多优势。接下来看看结果如何。

首先,即使程序结束,python也不会退出解释器。因此,我们可以检查变量的值和程序中定义的函数的正确性。

其次,我们可以轻松地调用python调试器,因为我们仍然在解释器中:

import pdb

pdb.pm()

这能定位异常发生的位置,然后我们可以处理异常代码。

自动评论代码

Ctrl / Cmd + /自动注释单元格中的选定行,再次命中组合将取消注释相同的代码行。

删除容易恢复难

你有没有意外删除过Jupyter notebook中的单元格?如果答案是肯定的,那么可以掌握这个撤消删除操作的快捷方式。

如果您删除了单元格的内容,可以通过按CTRL / CMD + Z轻松恢复它。

如果需要恢复整个已删除的单元格,请按ESC + Z或EDIT撤消删除单元格。

结论

在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

Python元组常用操作小技巧

所以这篇文章,我们先来回顾和总结Python数据结构里常用操作。Python中常见的数据结构可以统称为容器(container)。序列(如列表和元组)、映射(如字典)以及集合(set)是三类主要的容器。而扁平序列如str、bytes、bytearray、memoryview 和 array.array等不在这篇文章的讨论范围内。

在此,我们先从元组开始说起。

元组区别于列表的显著特征之一就是它不能被修改,但其另外一个作用就是 用于没有字段名的记录 [1] 。因为后者经常被忽略,我们先来看看元组作为记录的作用。

使用括号就可以定义一个元组。元组中的每个元素都存放了记录中一个字段的数据,外加这个字段的位置。正是这个位置信息给数据赋予了意义。下面的例子中,元组就被当作记录加以利用:

输出为:

上述for循环中的操作提取了元组中的元素,也叫作拆包(unpacking)。平行赋值是对元组拆包很好的应用,示例如下:

还有一个经典而优雅的应用是交换变量的值:

用 * 运算符把一个可迭代对象拆开作为函数的参数,例如Python的内置函数pmod接收两个数字类型的参数,返回商和余数。以下范例将使用 * 将元组传入函数。

输出为:

有些函数有多个返回值,将其赋给一个变量时,变量类型即是元组:

输出为:

zip是Python的内置函数,能够接收两个或多个序列,并组成一个元组列表,在Python3中会返回一个迭代器,如下所示:

输出为:

元组当然也支持一些常规操作,如对于元组 a = (1, 'y', 5, 5, 'x') :

上述内容不仅涵盖了元组的基本操作,同时也结合了实际工作中常搭配使用的其他函数、运算符等。在回顾这些知识时主要参考了两本经典的Python编程书籍:《流畅的Python》和《像计算机科学家一样思考Python》,有兴趣的朋友可以深入阅读!

希望这篇文章对你有帮助,下回将总结Python列表的使用技巧。

[1]《流畅的Python》:

Python说明书(一些小技巧和注意事项)

1.对一个类库或者函数的使用方法不明确时,可以使用 加个?或者help() 来查询它的使用方法

举个栗子:

我现在不知道math库是干什么的 就可以用 math? 来查询 系统就会告诉你它的使用方法

pow函数后的括号内容是什么意思 那也可以用 pow? 来查询 就能知道x/y对应的位置表示的含义了

或者用help()

2.python中没有%百分号这种东西 这个符号是取余符号

3.‘==’这个才是等于的意思  ‘=’这是赋值

4.python没有avg函数 要自己定义

avg=sum()/li()

5.不要出现一边单引号 一边双引号的现象 ‘  ” 会报错

在使用的时候最好是统一一下单引号还是双引号


新闻标题:python函数实用技巧的简单介绍
分享链接:http://kswsj.cn/article/phppeh.html

其他资讯